Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. A framework for spiking neuron models - the spike response model
 
book part or chapter

A framework for spiking neuron models - the spike response model

Gerstner, W.  
Moss, F.
•
Gielen, S.
2001
Handbook of Biological Physics

A description of neuronal activity on the level of ion channels, as in the Hodgkin-Huxley model, leads to a set of coupled nonlinear differential equations which are difficult to analyze. In this paper, we present a conceptual framework for a reduction of the nonlinear spike dynamics to a threshold process. Spikes occur if the membrane potential $u(t)$ reaches a threshold $\vartheta$. The voltage response to spike input is described by the postsynaptic potential $\epsilon$. Postsynaptic potentials of several input spikes are added linearly until $u$ reaches $\vartheta$. The output pulse itself and the reset/refractory period which follow the pulse are described by a function $\eta$. Since $\epsilon$ and $\eta$ can be interpreted as response kernels, the resulting model is called the Spike Response Model (SRM). After a short review of the Hodgkin-Huxley model we show that (i) Hodgkin-Huxley dynamics with time-dependent input can be reproduced to a high degree of accuracy by the SRM; (ii) the simple integrate-and-fire neuron is a special case of the Spike Response Model; (iii) compartmental neurons with a passive dendritic tree and a threshold process for spike generation can be treated in SRM-framework; (iv) small nonlinearities lead to interactions between spikes to be described by higher-order kernels.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SRM.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

30.26 MB

Format

Adobe PDF

Checksum (MD5)

ca5596768f40e1d593ceac3ac2b56a12

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés