Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. A framework for spiking neuron models - the spike response model
 
book part or chapter

A framework for spiking neuron models - the spike response model

Gerstner, W.  
Moss, F.
•
Gielen, S.
2001
Handbook of Biological Physics

A description of neuronal activity on the level of ion channels, as in the Hodgkin-Huxley model, leads to a set of coupled nonlinear differential equations which are difficult to analyze. In this paper, we present a conceptual framework for a reduction of the nonlinear spike dynamics to a threshold process. Spikes occur if the membrane potential $u(t)$ reaches a threshold $\vartheta$. The voltage response to spike input is described by the postsynaptic potential $\epsilon$. Postsynaptic potentials of several input spikes are added linearly until $u$ reaches $\vartheta$. The output pulse itself and the reset/refractory period which follow the pulse are described by a function $\eta$. Since $\epsilon$ and $\eta$ can be interpreted as response kernels, the resulting model is called the Spike Response Model (SRM). After a short review of the Hodgkin-Huxley model we show that (i) Hodgkin-Huxley dynamics with time-dependent input can be reproduced to a high degree of accuracy by the SRM; (ii) the simple integrate-and-fire neuron is a special case of the Spike Response Model; (iii) compartmental neurons with a passive dendritic tree and a threshold process for spike generation can be treated in SRM-framework; (iv) small nonlinearities lead to interactions between spikes to be described by higher-order kernels.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SRM.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

30.26 MB

Format

Adobe PDF

Checksum (MD5)

ca5596768f40e1d593ceac3ac2b56a12

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés