Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Population dynamics of spiking neurons: fast transients, asynchronous states and locking
 
research article

Population dynamics of spiking neurons: fast transients, asynchronous states and locking

Gerstner, W.  
2000
Neural Computation

An integral equation describing the time evolution of the population activity in a homogeneous pool of spiking neurons of the integrate-and-fire type is discussed. It is analytically shown that transients from a state of incoherent firing can be immediate. The stability of incoherent firing is analyzed in terms of the noise level and transmission delay, and a bifurcation diagram is derived. The response of a population of noisy integrate-and-fire neurons to an input current of small amplitude is calculated and characterized by a linear filter L. The stability of perfectly synchronized “locked” solutions is analyzed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Gerstner00.pdf

Access type

openaccess

Size

415.96 KB

Format

Adobe PDF

Checksum (MD5)

5f010ab8785b7f8b031c81636b428b95

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés