Semantic coding by supervised dimensionality reduction
This paper addresses the problem of representing multimedia information under a compressed form that permits efficient classification. The semantic coding problem starts from a subspace method where dimensionality reduction is formulated as a matrix factorization problem. Data samples are jointly represented in a common subspace extracted from a redundant dictionary of basis functions. We first build on greedy pursuit algorithms for simultaneous sparse approximations to solve the dimensionality reduction problem. The method is extended into a supervised algorithm, which further encourages the class separability in the extraction of the most relevant features. The resulting supervised dimensionality reduction scheme provides an interesting trade-off between approximation (or compression) and discriminant feature extraction (or classification). The algorithm provides a compressed signal representation that can directly be used for multimedia data mining. The application of the proposed algorithm to image recognition problems further demonstrates classification performances that are competitive with state-of-the-art solutions in handwritten digit or face recognition. Semantic coding certainly represents an interesting solution to the challenging problem of processing huge volumes of multidimensional data in modern multimedia systems, where compressed data have to be processed and analyzed with limited computational complexity.
Dimred_TMMfinal_doublecolumn.pdf
openaccess
402.92 KB
Adobe PDF
40b170294c3e567d8c8a785fdbe30203