The aim of the paper is to present the results of investigations conducted on the free surface flow in a Pelton turbine model bucket. Unsteady numerical simulations, based on the two-phase homogeneous model, are performed together with wall pressure measurements and flow visualizations. The results obtained allow defining five distinct zones in the bucket from the flow patterns and the pressure signal shapes. The results provided by the numerical simulation are compared for each zone. The flow patterns in the buckets are analyzed from the results. An investigation of the momentum transfer between the water particles and the bucket is performed, showing the regions of the bucket surface that contribute the most to the torque. The study is also conducted for the backside of the bucket, evidencing a probable Coanda interaction between the bucket cutout area and the water jet.