Approximation des moments par l'utilisation de la théorie des fonctions analytiques

In this thesis, I define and explain the notion of punctual analytical uniform development (DUAP) versus moments or cumulants approximation of punctual uniforms analyticals 's class statistics. Hence, I derive "truncated" DUAP's version for numerical computation and implementation which called finite DUAP (F-DUAP). Using F-DUAP approximation lead to an error which was estimated. Due to nature's one of axiom of UAP statistics, the concept extension of DUAP method, to an other class statistic is limited. So, a new local theoretical concept was defined named analytical uniform development (DUA). This generalization let all derived DUAP's theorems become more general. Automatic differentiation and F-DUAP allow the implementation of DUAP or DUA method's on computer: I write the CUMAD and CUMADG codes that make the methods of a practical use. By, the programme CUMAD, I valid the utility of DUAP method, when I applied it to the approximation to moments of "weighted sum of squares statistic".


Advisor(s):
Morgenthaler, Stephan
Marazzi, Alfio
Year:
2007
Publisher:
Lausanne, EPFL
Keywords:
Other identifiers:
urn: urn:nbn:ch:bel-epfl-thesis3640-9
Laboratories:
STAP
GR-FR


Note: The status of this file is: EPFL only


 Record created 2006-08-22, last modified 2018-10-07

Texte intégral / Full text:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)