Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies
 
Loading...
Thumbnail Image
research article

BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies

Fedurco, M.
•
Romieu, A.
•
Williams, S.
Show more
2006
Nucleic Acids Research

The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5'-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm2 from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studies. © 2006 Oxford University Press.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Nucl. Acids Res.-2006-Fedurco-e22.pdf

Type

Publisher's Version

Access type

openaccess

Size

1.4 MB

Format

Adobe PDF

Checksum (MD5)

ef1751420fae41c315feb5f361fb3297

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés