Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A simple test to check the optimality of sparse signal approximations
 
conference paper

A simple test to check the optimality of sparse signal approximations

Gribonval, R.
•
Figueras i Ventura, R.
•
Vandergheynst, P.  
2005
IEEE International Conference on Acoustics, Speech, and Signal Processing
ICASSP'05

Approximating a signal or an image with a sparse linear expansion from an over-complete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is an NP-hard problem. Despite of this, several algorithms have been proposed that provide sub-optimal solutions. However, it is generally difficult to know how close the computed solution is to being ``optimal'', and whether another algorithm could provide a better result. In this paper we provide a simple test to check whether the output of a sparse approximation algorithm is nearly optimal, in the sense that no significantly different linear expansion from the dictionary can provide both a smaller approximation error and a better sparsity. As a by-product of our theorems, we obtain results on the identifiability of sparse over-complete models in the presence of noise, for a fairly large class of sparse priors.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Gribonval2005_1167.pdf

Access type

openaccess

Size

134 KB

Format

Adobe PDF

Checksum (MD5)

c323d127f118ae19ee44f925bfe8b316

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés