Mobile service robots are going to play an increasing role in the society of humans. Voice-enabled interaction with service robots becomes very important, if such robots are to be deployed in real-world environments and accepted by the vast majority of potential human users. The research presented in this thesis addresses the problem of speech recognition integration in an interactive voice-enabled interface of a service robot, in particular a tour-guide robot. The task of a tour-guide robot is to engage visitors to mass exhibitions (users) in dialogue providing the services it is designed for (e.g. exhibit presentations) within a limited time. In managing tour-guide dialogues, extracting the user goal (intention) for requesting a particular service at each dialogue state is the key issue. In mass exhibition conditions speech recognition errors are inevitable because of noisy speech and uncooperative users of robots with no prior experience in robotics. They can jeopardize the user goal identification. Wrongly identified user goals can lead to communication failures. Therefore, to reduce the risk of such failures, methods for detecting and compensating for communication failures in human-robot dialogue are needed. During the short-term interaction with visitors, the interpretation of the user goal at each dialogue state can be improved by combining speech recognition in the speech modality with information from other available robot modalities. The methods presented in this thesis exploit probabilistic models for fusing information from speech and auxiliary modalities of the robot for user goal identification and communication failure detection. To compensate for the detected communication failures we investigate multimodal methods for recovery from communication failures. To model the process of modality fusion, taking into account the uncertainties in the information extracted from each input modality during human-robot interaction, we use the probabilistic framework of Bayesian networks. Bayesian networks are graphical models that represent a joint probability function over a set of random variables. They are used to model the dependencies among variables associated with the user goals, modality related events (e.g. the event of user presence that is inferred from the laser scanner modality of the robot), and observed modality features providing evidence in favor of these modality events. Bayesian networks are used to calculate posterior probabilities over the possible user goals at each dialogue state. These probabilities serve as a base in deciding if the user goal is valid, i.e. if it can be mapped into a tour-guide service (e.g. exhibit presentation) or is undefined – signaling a possible communication failure. The Bayesian network can be also used to elicit probabilities over the modality events revealing information about the possible cause for a communication failure. Introducing new user goal aspects (e.g. new modality events and related features) that provide auxiliary information for detecting communication failures makes the design process cumbersome, calling for a systematic approach in the Bayesian network modelling. Generally, introducing new variables for user goal identification in the Bayesian networks can lead to complex and computationally expensive models. In order to make the design process more systematic and modular, we adapt principles from the theory of grounding in human communication. When people communicate, they resolve understanding problems in a collaborative joint effort of providing evidence of common shared knowledge (grounding). We use Bayesian network topologies, tailored to limited computational resources, to model a state-based grounding model fusing information from three different input modalities (laser, video and speech) to infer possible grounding states. These grounding states are associated with modality events showing if the user is present in range for communication, if the user is attending to the interaction, whether the speech modality is reliable, and if the user goal is valid. The state-based grounding model is used to compute probabilities that intermediary grounding states have been reached. This serves as a base for detecting if the the user has reached the final grounding state, or wether a repair dialogue sequence is needed. In the case of a repair dialogue sequence, the tour-guide robot can exploit the multiple available modalities along with speech. For example, if the user has failed to reach the grounding state related to her/his presence in range for communication, the robot can use its move modality to search and attract the attention of the visitors. In the case when speech recognition is detected to be unreliable, the robot can offer the alternative use of the buttons modality in the repair sequence. Given the probability of each grounding state, and the dialogue sequence that can be executed in the next dialogue state, a tour-guide robot has different preferences on the possible dialogue continuation. If the possible dialogue sequences at each dialogue state are defined as actions, the introduced principle of maximum expected utility (MEU) provides an explicit way of action selection, based on the action utility, given the evidence about the user goal at each dialogue state. Decision networks, constructed as graphical models based on Bayesian networks are proposed to perform MEU-based decisions, incorporating the utility of the actions to be chosen at each dialogue state by the tour-guide robot. These action utilities are defined taking into account the tour-guide task requirements. The proposed graphical models for user goal identification and dialogue error handling in human-robot dialogue are evaluated in experiments with multimodal data. These data were collected during the operation of the tour-guide robot RoboX at the Autonomous System Lab of EPFL and at the Swiss National Exhibition in 2002 (Expo.02). The evaluation experiments use component and system level metrics for technical (objective) and user-based (subjective) evaluation. On the component level, the technical evaluation is done by calculating accuracies, as objective measures of the performance of the grounding model, and the resulting performance of the user goal identification in dialogue. The benefit of the proposed error handling framework is demonstrated comparing the accuracy of a baseline interactive system, employing only speech recognition for user goal identification, and a system equipped with multimodal grounding models for error handling.