Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Robust Emulations of Shared Memory in a Crash-Recovery Model
 
conference paper

Robust Emulations of Shared Memory in a Crash-Recovery Model

Guerraoui, Rachid  
•
Levy, Ron R.
2004
24th IEEE International Conference on Distributed Computing Systems (ICDCS'04)
24th IEEE International Conference on Distributed Computing Systems (ICDCS'04)

A shared memory abstraction can be robustly emulated over an asynchronous message passing system where any process can fail by crashing and possibly recover (crash-recovery model), by having (a) the processes exchange messages to synchronize their read and write operations and (b) log key information on their local stable storage. This paper extends the existing atomicity consistency criterion defined for multi-writer/multi-reader shared memory in a crash-stop model, by providing two new criteria for the crash-recovery model. We introduce lower bounds on the log-complexity for each of the two corresponding types of robust shared memory emulations. We demonstrate that our lower bounds are tight by providing algorithms that match them. Besides being optimal, these algorithms have the same message and time complexity as their most efficient counterpart we know of in the crash-stop model.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Access type

openaccess

Size

148.52 KB

Format

Adobe PDF

Checksum (MD5)

7d074c775ef31a18511eb15a944039f8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés