Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-pressure krypton gas and statistical heavy-atom refinement: A successful combination of tools for macromolecular structure determination
 
research article

High-pressure krypton gas and statistical heavy-atom refinement: A successful combination of tools for macromolecular structure determination

Schiltz, M.  
•
Shepard, W.
•
Fourme, R.
Show more
1997
Acta Crystallographica Section D-Biological Crystallography

The noble gas krypton is shown to bind to crystallized proteins in a similar way to xenon [Schiltz, Prange & Fourme (1994). J. Appl. Cryst. 27, 950-960]. Preliminary tests show that the major krypton binding sites are essentially identical to those of xenon. Noticeable substitution is achieved only at substantially higher pressures (above 50 x 10(5) Pa). As is the case for xenon, the protein complexes with krypton are highly isomorphous with the native structure so that these complexes can be used for phase determination in protein crystallography. Krypton is not as heavy as xenon, but its K-absorption edge is situated at a wavelength (0.86 Angstrom) that is readily accessible on synchrotron radiation sources. As a test case, X-ray diffraction data at the high-energy side of the K edge were collected on a crystal of porcine pancreatic elastase (molecular weight of 25.9 kDa) put under a krypton gas pressure of 56 x 10(5) Pa. The occupancy of the single Kr atom is approximately 0.5, giving isomorphous and anomalous scattering strengths of 15.2 and 1.9 e, respectively. This derivative could be used successfully for phase determination with the SIRAS method (single isomorphous replacement with anomalous scattering). After phase improvement by solvent flattening, the resulting electron-density map is of exceptionally high quality, and has a correlation coefficient of 0.85 with a map calculated from the refined native structure. Careful data collection and processing, as well as the correct statistical treatment of isomorphous and anomalous signals have proven to be crucial in the determination of this electron-density map. Heavy-atom refinement and phasing were carried out with the program SHARP, which is a fully fledged implementation of the maximum-likelihood theory for heavy-atom refinement [Bricogne (1991). Crystallographic Computing 5, edited by D. Moras, A. D. Podjarny & J. C. Thierry, pp. 257-297. Oxford: Clarendon Press]. It is concluded that the use of xenon and krypton derivatives, when they can be obtained, associated with statistical heavy-atom refinement will allow one to overcome the two major limitations of the isomorphous replacement method i.e. non-isomorphism and the problem of optimal estimation of heavy-atom parameters.

  • Details
  • Metrics
Type
research article
DOI
10.1107/S0907444996009705
Author(s)
Schiltz, M.  
Shepard, W.
Fourme, R.
Prange, T.
DeLaFortelle, E.
Bricogne, G.
Date Issued

1997

Published in
Acta Crystallographica Section D-Biological Crystallography
Volume

53

Start page

78

End page

92

Note

Part 1

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LCR  
Available on Infoscience
March 29, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/229011
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés