Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Automated Parameterization and Patching of Bifurcating Vessels
 
report

Automated Parameterization and Patching of Bifurcating Vessels

Antiga, Luca
•
Steinman, David A.
2003

Recent developments in computational modeling of human arteries have opened the possibility of performing subject-specific analyses on increasingly larger numbers of subjects. This achievement will eventually lead to a better understanding of the role of geometry and hemodynamics in the initiation and development of vascular disease. The availability of data from population or longitudinal studies raises the problem of quantitatively comparing distributions of geometric and hemodynamic quantities among different models. This task is made difficult by the fact that modeled arterial segments typically comprise bifurcations and regions of high curvature. A technique for comparing surface distributions among realistic models of the carotid bifurcation has been recently proposed in [1]. In that work, surface mesh nodes were classified as belonging to semi-automatically defined quadrilateral patches, and nodal quantities of interest averaged over each patch. This avoided node-to-node comparison and the need for registration. However, patch definition required user interaction and was thus subject to operator-variability. In this work we present a fully automated technique for parameterization and patching of the surface of bifurcating vessels. The method is based on robust and objective schemes aimed at preserving the consistency of the parameterization over a wide range of bifurcating geometries, allowing quantitative comparison of surface distributions in presence of high anatomic variability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Antiga.pdf

Access type

openaccess

Size

9.39 MB

Format

Adobe PDF

Checksum (MD5)

3cdd0971f6b469e47109556205ffccf4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés