report
Learning influence among interacting Markov chains
2005
We present a model that learns the influence of interacting Markov chains within a team. The proposed model is a dynamic Bayesian network (DBN) with a two-level structure: individual-level and group-level. Individual level models actions of each player, and the group-level models actions of the team as a whole. Experiments on synthetic multi-player games and a multi-party meeting corpus show the effectiveness of the proposed model.
Loading...
Name
rr-05-48.pdf
Access type
openaccess
Size
588.8 KB
Format
Adobe PDF
Checksum (MD5)
8b7f4e0f0947ab554b24521c92c325dc