An Implicit Motion Likelihood for Tracking with Particle Filters

Particle filters are now established as the most popular method for visual tracking. Within this framework, it is generally assumed that the data are temporally independent given the sequence of object states. In this paper, we argue that in general the data are correlated, and that modeling such dependency should improve tracking robustness. To take data correlation into account, we propose a new model which can be interpreted as introducing a likelihood on implicit motion measurements. The proposed model allows to filter out visual distractors when tracking objects with generic models based on shape or color distribution representations, as shown by the reported experiments.


Published in:
British Machine Vision Conference (BMVC)
Presented at:
British Machine Vision Conference (BMVC)
Year:
2003
Publisher:
Norwich, UK, Springer Verlag
Keywords:
Note:
Similar to RR-03-15.
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)