Speech Recognition Using Advanced HMM2 Features

HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR features. Here, we further investigate this novel approach towards using a full HMM2 as feature extractor, working in the spectral domain, and extracting robust formant-like features for standard ASR system. HMM2 performs a nonlinear, state-dependent frequency warping, and it is shown that the resulting frequency segmentation actually contains particularly discriminant features. To further improve the HMM2 system, we complement the initial spectral energy vectors with frequency information. Finally, adding temporal information to the HMM2 feature vector yields further improvements. These conclusions are experimentally validated on the Numbers95 database, where word error rates of 15\%, using only a 4-dimensional feature vector (3 formant-like parameters and one time index) were obtained.

Published in:
Automatic Speech Recognition and Understanding Workshop
Presented at:
Automatic Speech Recognition and Understanding Workshop
Madonna di Campiglio, Italy
IDIAP-rr 01-24

Note: The status of this file is: Anyone

 Record created 2006-03-10, last modified 2020-07-30

Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
(Not yet reviewed)