Video Indexing and Similarity Retrieval by Largest Common Subgraph Detection using Decision Trees

While the largest common subgraph (LCSG) between a query and a database of models can provide an elegant and intuitive measure of similarity for many applications, it is computationally expensive to compute. Recently developed algorithms for subgraph isomorphism detection take advantage of prior knowledge of a database of models to improve the speed of online matching. This paper presents a new algorithm based on similar principles to solve the largest common subgraph problem. The new algorithm significantly reduces the computational complexity of detection of the LCSG between a know database of models, and a query given online.

Published in:
Pattern Recognition, 34, 05

 Record created 2006-03-10, last modified 2018-03-17

External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
(Not yet reviewed)