Learning the Decision Function for Speaker Verification

This paper explores the possibility to replace the usual thresholding decision rule of log likelihood ratios used in speaker verification systems by more complex and discriminant decision functions based for instance on Linear Regression models or Support Vector Machines. Current speaker verification systems, based on generative models such as HMMs or GMMs, can indeed easily be adapted to use such decision functions. Experiments on both text dependent and text independent tasks always yielded performance improvements and sometimes significantly.


Year:
2000
Publisher:
IDIAP
Keywords:
Note:
published in IEEE International Conference on Acoustic, Speech, and Signal Processing
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)