Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. DynaBoost: Combining Boosted Hypotheses in a Dynamic Way
 
report

DynaBoost: Combining Boosted Hypotheses in a Dynamic Way

Moerland, Perry
•
Mayoraz, Eddy
1999

We present an extension of Freund and Schapire's AdaBoost algorithm that allows an input-dependent combination of the base hypotheses. A separate weak learner is used for determining the input-dependent weights of each hypothesis. The error function minimized by these additional weak learners is a margin cost function that has also been shown to be minimized by AdaBoost. The weak learners used for dynamically combining the base hypotheses are simple perceptrons. We compare our dynamic combination model with AdaBoost on a range of binary and multi-class classification problems. It is shown that the dynamic approach significantly improves the results on most data sets when (rather weak) perceptron base hypotheses are used, while the difference in performance is small when the base hypotheses are MLPs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr99-09.pdf

Access type

openaccess

Size

317.84 KB

Format

Adobe PDF

Checksum (MD5)

8039b31f155adb97d8d0b4c60cd38960

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés