Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes
 
research article

Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes

Niclass, Cristiano  
•
Rochas, Alexis  
•
Besse, Pierre-André  
Show more
2005
IEEE Journal of Solid-State Circuits

The design and characterization of an imaging system is presented for depth information capture of arbitrary three-dimensional (3-D) objects. The core of the system is an array of 32 × 32 rangefinding pixels that independently measure the time-of-flight of a ray of light as it is reflected back from the objects in a scene. A single cone of pulsed laser light illuminates the scene, thus no complex mechanical scanning or expensive optical equipment are needed. Millimetric depth accuracies can be reached thanks to the rangefinder's optical detectors that enable picosecond time discrimination. The detectors, based on a single photon avalanche diode operating in Geiger mode, utilize avalanche multiplication to enhance light detection. On-pixel high-speed electrical amplification can therefore be eliminated, thus greatly simplifying the array and potentially reducing its power dissipation. Optical power requirements on the light source can also be significantly relaxed, due to the array's sensitivity to single photon events. A number of standard performance measurements, conducted on the imager, are discussed in the paper. The 3-D imaging system was also tested on real 3-D subjects, including human facial models, demonstrating the suitability of the approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JSSC'05.pdf

Access type

openaccess

Size

1.72 MB

Format

Adobe PDF

Checksum (MD5)

a6c9df99b8f2d0e47924909b1a740b8c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés