Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Downscaling Fourier Transform Infrared Spectroscopy to the Micrometer and Nanogram Scale: Secondary Structure of Serotonin and Acetylcholine Receptors
 
research article

Downscaling Fourier Transform Infrared Spectroscopy to the Micrometer and Nanogram Scale: Secondary Structure of Serotonin and Acetylcholine Receptors

Rigler, Per  
•
Ulrich, Wolf-Peter  
•
Hovius, Ruud  
Show more
2003
Biochemistry

High signal-to-noise Fourier transform IR (FTIR) spectra of the 5-hydroxytryptamine (serotonin) receptor (5-HT3R) and the nicotinic acetylcholine receptor (nAChR) were obtained by microscope FTIR spectroscopy using micrometer-sized, fully hydrated protein films. Because this novel procedure requires only nanogram quantities of membrane proteins, which is 4-5 orders of magnitude less than the amt. of protein typically used for conventional FTIR spectroscopy, it opens the possibility to access the structure and dynamics of many important mammalian receptor proteins. The secondary structure of detergent-solubilized 5-HT3R detd. by curve fitting of the amide I band yielded 36% a-helix, 33% b-strand, 15% b-turn, and 16% nonregular structures, which remained unchanged upon reconstitution in lipid membranes. From hydrogen-deuterium exchange, the secondary structure of the water-accessible part of 5-HT3R was detd. as 14% a-helix, 16% b-strand, 26% b-turn, and 14% nonregular structures. Interestingly, we found that both the overall and the water-accessible nAChR secondary structures were nearly identical to those of 5-HT3R, in agreement with predicted structures of this class of receptors. This is the first time that structural investigations were obtained for two closely related ligand-gated ion channels under strictly identical exptl. conditions. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/bi035113k
Web of Science ID

WOS:000186846800026

Author(s)
Rigler, Per  
Ulrich, Wolf-Peter  
Hovius, Ruud  
Ilegems, Erwin  
Pick, Horst  
Vogel, Horst  
Date Issued

2003

Published in
Biochemistry
Volume

42

Issue

47

Start page

14017

End page

14022

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPPM  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226377
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés