Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study
 
research article

Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study

Doclo, Karel
•
Rothlisberger, Ursula  
2000
The Journal of Physical Chemistry A

An aq. soln. of peroxynitrous acid has been studied using first-principles mol. dynamics simulations based on d. functional theory. The relative Helmholtz energies of different conformers have been detd. via thermodn. integration with constraints. At contrast to the gas phase, only two conformers, a cis and a trans isomer, are present in soln. and their relative Helmholtz energy is enhanced with respect to the gas phase. The av. structural properties of the two conformational forms on the other hand are very close to the resp. gas phase values. The interconversion pathway between the two conformers has been detd., and the Helmholtz energy profile for the isomerization reaction in soln. is presented. The rotational barrier is calcd. to be substantially higher than in gas phase due to a strong rearrangement of the solvent during the reaction. The structure of the transition state can only be described correctly when the solvent is taken explicitly into account. Our calcns. indicate that the cis form is the dominant species in aq. soln. at ambient temps. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/jp0012193
Author(s)
Doclo, Karel
•
Rothlisberger, Ursula  
Date Issued

2000

Published in
The Journal of Physical Chemistry A
Volume

104

Issue

27

Start page

6464

End page

6469

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCBC  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226156
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés