Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Relaxation of Two-Spin Coherence Due to Cross-Correlated Fluctuations of Dipole-Dipole Couplings and Anisotropic Shifts in NMR of 15N,13C-Labeled Biomolecules
 
research article

Relaxation of Two-Spin Coherence Due to Cross-Correlated Fluctuations of Dipole-Dipole Couplings and Anisotropic Shifts in NMR of 15N,13C-Labeled Biomolecules

Chiarparin, Elisabetta
•
Pelupessy, Philippe  
•
Ghose, Ranajeet
Show more
1999
Journal of the American Chemical Society

A comprehensive description is presented of the effects on two-spin coherences (i.e., superpositions of zero- and double-quantum coherences) of cross-correlation between the fluctuations of two different relaxation mechanisms in NMR (NMR). Dipole-dipole (DD) interactions between four nuclei and chem. shift anisotropy (CSA) of two of these nuclei are considered. Two complementary expts. have been designed for 15N,13C-labeled proteins to quantify the effects of cross-correlation between the 13Ca-1Ha and 15N-1HN dipolar interactions on two-spin coherences involving 13Ca of the ith residue with the 15N of the (i+1) the amino acid. Two other expts. allow one to quantify the effect of cross-correlation between the 13C' (carbonyl) CSA and the 13Ca-1Ha dipolar coupling on the relaxation of two-spin coherences involving the 13C' and 13Ca nuclei on the same residue of the protein. These expts. have been used to ext. relevant cross-correlation rates in 15N,13C-labeled human ubiquitin. These rates show a high degree of correlation with the backbone Y angles in proteins. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja984390p
Author(s)
Chiarparin, Elisabetta
Pelupessy, Philippe  
Ghose, Ranajeet
Bodenhausen, Geoffrey  
Date Issued

1999

Published in
Journal of the American Chemical Society
Volume

121

Issue

29

Start page

6876

End page

6883

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LRMB  
Available on Infoscience
February 22, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225643
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés