On extremal behaviors of Murty's least index method

In this small note, we observe some extremal behaviors of Murty's least index method for solving linear complementarity problems. In particular, we show that the expected number of steps for solving Murty's exponential example with a random permutation of variable indices is exactly equal to n, where n is the size of the input square matrix.


Publié dans:
Mathematical Programming, 64, 365-370
Année
1994
Note:
PRO 94.09
Laboratoires:




 Notice créée le 2006-02-13, modifiée le 2018-01-27


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)