Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Infrared laser chemistry of trichlorosilane in view of silicon isotope separation
 
research article

Infrared laser chemistry of trichlorosilane in view of silicon isotope separation

Polianski, M
•
Boyarkin, OV  
•
Rizzo, TR  
Show more
2003
The Journal of Physical Chemistry A

With a view toward laser isotope separation of Si, we have studied infrared multiphoton dissociation (IRMPD) of room temperature trichlorosilane, SiHCl3. Over the wavelength range investigated, multiphoton dissociation of the room temperature species exhibits a maximum efficiency at 12.6 mum and a threshold fluence of only similar to1 J/cm(2). Vibrational overtone preexcitation of SiHCl3 to the first SiH-stretch overtone (2nu(1)) prior to IRMPD results in a 10-fold increase of the dissociation yield compared to molecules with only thermal excitation. In an effort to collect the nascent SiCl2 dissociation fragments, we have tested a number of different molecules that could serve as a scavenger to convert them into a stable gaseous compound. Several of these molecules react directly with trichlorosilane after being decomposed by collisional energy transfer from vibrationally excited SiHCl3 and therefore are not suitable for a laser isotope separation process. Of the compounds tested, we find that only BCl3 scavenges SiCl2 without significant reaction with the starting material.

  • Details
  • Metrics
Type
research article
DOI
10.1021/jp0356362
Web of Science ID

WOS:000185857400025

Author(s)
Polianski, M
Boyarkin, OV  
Rizzo, TR  
Apatin, VM
Laptev, VB
Ryabov, EA
Date Issued

2003

Published in
The Journal of Physical Chemistry A
Volume

107

Issue

41

Start page

8578

End page

8583

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPM  
Available on Infoscience
December 15, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/221359
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés