Scope for further analytical solutions for constant-flux infiltration into a semi-infinite soil profile or redistribution in a finite soil profile

We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi- infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite- length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.

Published in:
Water Resources Research, 38, 12, 1265

Note: The status of this file is: Involved Laboratories Only

 Record created 2005-12-09, last modified 2018-03-17

Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
(Not yet reviewed)