Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Lucky Read/Write Access to Robust Atomic Storage
 
report

Lucky Read/Write Access to Robust Atomic Storage

Guerraoui, Rachid  
•
Levy, Ron R.
•
Vukolic, Marko
2005

This paper establishes tight bounds on the best-case time-complexity of distributed atomic read/write storage implementations that tolerate worst-case conditions. We study asynchronous robust implementations where a writer and a set of reader processes (clients) access an atomic storage implemented over a set of $2t+b+1$ server processes of which $t$ can fail: $b$ of these can be malicious and the rest can fail by crashing. We define a {\em lucky} operation (read or write) as one that runs synchronously and without contention. We determine the exact conditions under which a {\em lucky} operation can be {\em fast}, namely expedited in one-communication round-trip with no data authentication. We show that every \emph{lucky} write (resp., read) can be \emph{fast} despite $f_w$ (resp., $f_r$) actual failures, if and only if $f_w + f_r \leq t - b$.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

lucky-TR.pdf

Access type

openaccess

Size

389.42 KB

Format

Adobe PDF

Checksum (MD5)

c9a3334d8008b222d1cbf905e49e35e9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés