Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Colloidal processing and sintering of nanosized transition aluminas
 
research article

Colloidal processing and sintering of nanosized transition aluminas

Bowen, Paul  
•
Carry, Claude
•
Luxembourg, David
Show more
2005
Powder Technology

The dispersion of nanosized gamma aluminas with high specific surfaces areas (100 m2 /g) and primary particle sizes around 20 nm, using polyacrylic acid, has been investigated. The effect of pH and polymer concentration showed that the highest density green bodies were produced using high polymer concentrations (6 wt.%) and pH of 6. Interparticle potential calculations have been made and help explain the underlying dispersion mechanism at least on a qualitative level. The dispersions were then used to slip cast green bodies followed by drying and sintering. The types of gamma alumina powder have been investigated, the pure gamma alumina, doped with MgO and also with the addition of alpha alumina seeds. The high degree of agglomeration of the gamma alumina powders led to very low densities (60%) even the alpha seeded alumina reached only 85% theoretical density. Attrition milling with zirconia media improves both green density and sintered densities significantly with all powders showing sintered densities >97%. Microstructural analysis on polished and etched surfaces show, however, that the grain sizes are well above 1 Am over 50 times greater than the initial gamma alumina primary particles. A two-step sintering cycle was investigated with the Mg doped powder and average grain sizes around 580 nm were achieved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Bowen&al_2005.pdf

Access type

restricted

Size

396.17 KB

Format

Adobe PDF

Checksum (MD5)

a71b54f29fb23723828d4968a911217e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés