Journal article

Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors

We report on the first successful operation of a scanning force microscope using microfabricated capacitive force sensors. The sensors, which are made from single crystal silicon on insulator wafers, consist of a cantilever spring with integrated tip at the free end and an electrically insulated counter electrode. Dynamic force gradient sensing is the preferred operating mode. Here, tip–sample interactions are detected by letting the sensor act as a resonator in a phase controlled oscillator setup and measuring corresponding shifts of the oscillation frequency. Experiments were performed in vacuum using a standard tunneling microscope. A Cr grating on a quartz substrate served as the test sample. Topographic images showing details on a 10 nm scale were obtained operating at a constant force gradient of the order of 0.01 N/m. In addition, critical design parameters are discussed based on an analysis of the electromechanical properties of the sensors.




    Record created on 2005-11-02, modified on 2016-08-08

Related material