Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Evaluating the performance of software distributed shared memory as a target for parallelizing compilers
 
conference paper not in proceedings

Evaluating the performance of software distributed shared memory as a target for parallelizing compilers

Cox, Alan L.
•
Dwarkadas, Sandhya
•
Lu, Honghui
Show more
1997
Proceedings of the Sixth HotOS Workshop

In this paper we evaluate the use of software distributed shared memory (DSM) on a message passing machine as the target for a parallelizing compiler. We compare this approach to compiler-generated message passing, hand-coded software DSM and hand-coded message passing. For this comparison, we use six applications: four that are regular and two that are irregular: Our results are gathered on an 8-node IBM SP/2 using the TreadMarks software DSM system. We use the APR shared-memory (SPF) compiler to generate the shared memory-programs and the APR XHPF compiler to generate message passing programs. The hand-coded message passing programs run with the IBM PVMe optimized message passing library. On the regular programs, both the compiler-generated and the hand-coded message passing outperform the SPF/TreadMarks combination: the compiler-generated message passing by 5.5% to 40%, and the hand-coded message passing by 7.5% to 49%. On the irregular programs, the SPF/TreadMarks combination outperforms the compiler-generated message passing by 38% and 89%, and only slightly underperforms the hand-coded message passing, differing by 4.4% and 16%. We also identify the factors that account for the performance differences, estimate their relative importance, and describe methods to improve the performance

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

00580943.pdf

Access type

openaccess

Size

1009.48 KB

Format

Adobe PDF

Checksum (MD5)

83de697c611803577011b9dee077d5df

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés