Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation

Lithography on (100) single-crystal silicon and amorphous silicon is performed by electric-field-enhanced local oxidation of silicon using an atomic force microscope (AFM). Amorphous silicon is used as a negative resist to pattern silicon oxide, silicon nitride, and selected metals. Amorphous silicon is used in conjunction with chromium to create a robust etch mask, and with titanium to create a positive AFM resist. All lithographies presented here were patterned in parallel by arrays of two piezoresistive silicon or two silicon-nitride cantilevers. Parallel arrays of five piezoresistive cantilevers were fabricated and used in imaging and lithographic applications. A 400 μm × 100 μm parallel image is obtained in the time it would normally take to obtain a 100 μm × 100 μm image. In our method of parallel operation, it is only possible to image and lithograph in modes that do not require feedback. In imaging, this limits the possible applications of the parallel AFM. During parallel lithography, discrepancies are seen between the tip in the feedback loop and those that are not. To overcome these differences it will be necessary to devise a system where each of the tips in the array are controlled by individual feedback loops.


Published in:
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 13, 3, 1380-1385
Year:
1995
Laboratories:


Note: The status of this file is: EPFL only


 Record created 2005-10-14, last modified 2018-12-03

n/a:
Download fulltext

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)