Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Contribution of proteoglycans to human immunodeficiency virus type 1 brain invasion
 
research article

Contribution of proteoglycans to human immunodeficiency virus type 1 brain invasion

Bobardt, Michael D
•
Salmon, Patrick
•
Wang, Lianchun
Show more
2004
Journal of Virology

As a neurotropic virus, human immunodeficiency virus type 1 (HIV-1) invades the brain and causes severe neuronal, astrocyte, and myelin damage in AIDS patients. To gain access to the brain, HIV-1 must migrate through brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB). Given that BMECs lack the entry receptor CD4, HIV-1 must use receptors distinct from CD4 to enter these cells. We previously reported that cell surface proteoglycans serve as major HIV-1 receptors on primary human endothelial cells. In this study, we examined whether proteoglycans also impact cell-free HIV-1 invasion of the brain. Using an artificial BBB transmigration assay, we found that both heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) are abundantly expressed on primary BMECs and promote HIV-1 attachment and entry. In contrast, the classical entry receptors, CXCR4 and CCR5, only moderately enhanced these processes. HSPGs and CSPGs captured HIV-1 in a gp120-dependent manner. However, no correlation between coreceptor usage and transmigration was identified. Furthermore, brain-derived viruses did not transmigrate more efficiently than lymphoid-derived viruses, suggesting that the ability of HIV-1 to replicate in the brain does not correlate with its capacity to migrate through the BBB as cell-free virus. Given that HIV-1-proteoglycan interactions are based on electrostatic contacts between basic residues in gp120 and sulfate groups in proteoglycans, HIV-1 may exploit these interactions to rapidly enter and migrate through the BBB to invade the brain.

  • Details
  • Metrics
Type
research article
DOI
10.1128/JVI.78.12.6567-6584.2004
Author(s)
Bobardt, Michael D
Salmon, Patrick
Wang, Lianchun
Esko, Jeffrey D
Gabuzda, Dana
Fiala, Milan
Trono, Didier  
Van der Schueren, Bernadette
David, Guido
Gallay, Philippe A
Date Issued

2004

Publisher

American Society for Microbiology

Published in
Journal of Virology
Volume

78

Issue

12

Start page

6567

End page

84

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LVG  
Available on Infoscience
September 5, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/215901
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés