Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The HIV-1 Nef protein and phagocyte NADPH oxidase activation
 
research article

The HIV-1 Nef protein and phagocyte NADPH oxidase activation

Vilhardt, Frederik
•
Plastre, Olivier
•
Sawada, Makoto
Show more
2002
Journal of Biological Chemistry

Nef, a multifunctional HIV protein, activates the Vav/Rac/p21-activated kinase (PAK) signaling pathway. Given the potential role of this pathway in the activation of the phagocyte NADPH oxidase, we have investigated the effect of the HIV-1 Nef protein on the phagocyte respiratory burst. Microglia (cell line and primary culture) were transduced with lentiviral expression vectors. Expression of Nef did not activate the NADPH oxidase by itself but led to a massive enhancement of the responses to a variety of stimuli (Ca(2+) ionophore, formyl peptide, endotoxin). These effects were not caused by up-regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation on the NADPH oxidase in intact phagocytes. Rac activation is not sufficient to stimulate the phagocyte NADPH oxidase; however, it markedly enhances the NADPH oxidase response to other stimuli.

  • Details
  • Metrics
Type
research article
DOI
10.1074/jbc.M200862200
Author(s)
Vilhardt, Frederik
Plastre, Olivier
Sawada, Makoto
Suzuki, Kazuo
Wiznerowicz, Maciej  
Kiyokawa, Etsuko
Trono, Didier  
Krause, Karl-Heinz
Date Issued

2002

Published in
Journal of Biological Chemistry
Volume

277

Issue

44

Start page

42136

End page

43

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LVG  
Available on Infoscience
September 5, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/215876
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés