Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. The Renegotiable Variable Bit Rate Service
 
report

The Renegotiable Variable Bit Rate Service

Giordano, Silvia  
•
Le Boudec, Jean-Yves  
1998

A shaper is a system that stores incoming bits in a buffer and delivers them as early as possible, while forcing the output to be constrained with a given arrival curve. A shaper is time invariant if the traffic constraint is defined by a fixed arrival curve; it is time varying if the condition on the output is given by a time varying traffic contract. This occurs, for example, with renegotiable variable bit rate (RVBR) services. We focus on the class of time varying shapers called time varying leaky bucket shapers; such shapers are defined by a fixed numbers of leaky buckets, whose parameters (rate and bucket size) are changed at specific transition moments. We assume that the bucket levels are kept unchanged at those transition moments (no reset'' assumption). Our main finding is an input-output characterisation for this class of time varying shapers. Then we apply it to the tradeoff in optimising the RVBR service, assuming that a perfect prediction of future traffic can be made. We provide an algorithm that solves the problem of finding, at any renegotiation, the parameters for a RVBR service when the knowledge of the input traffic is limited to the next interval (local optimisation problem). We illustrate the impact of the no-reset'' assumption by analyzing on some examples the losses that occur when the source chooses the opposite approach, namely, the ``reset'' approach. Keywords: Shaping system, renegotiation, VBR parameters, resources optimisation, RSVP.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IC_TECH_REPORT_199838.pdf

Access type

openaccess

Size

632.58 KB

Format

Adobe PDF

Checksum (MD5)

2c226af280e2478afe6eabd66658fc97

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés