Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Lossy compression and wavelet thresholding for image denoising
 
report

Lossy compression and wavelet thresholding for image denoising

Grace Chang, S.
•
Yu, B.
•
Vetterli, M.  
1998

In recent work, it was proposed to use lossy compression to remove noise from corrupted signals, based on the rationale that a reasonable compression method retains the dominant signal features more than the randomness of the noise. To further understand and substantiate this theory, we first explain why compression (via coefficient quantization) is appropriate for filter thresholding for denoising. That is, denoising is mainly due to the zero-zone and that the full precision of the thresholded coefficients is of secondary importance. Secondly, under the realistic assumption that wavelet coefficients follow a Generalized Gaussian distribution, we derive an optimal threshold value (and thus the zero-zone width) from minimizing the mean squared error among soft-threshold estimators. We propose an adaptive threshold which is easy to compute and nearly optimal. Thirdly, along with the chosen zero-zone, we use Rissanen's Minimum Description Length (MDL) principle to quantize outside of the zero-zone. Lastly, experimental results on noisy images show that the proposed compression method does indeed remove noise and improve the image quality.

  • Details
  • Metrics
Type
report
Author(s)
Grace Chang, S.
Yu, B.
Vetterli, M.  
Date Issued

1998

Written at

EPFL

EPFL units
LCAV  
Available on Infoscience
July 13, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/214370
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés