Conference paper

Particle swarm optimization for unsupervised robotic learning

We explore using particle swarm optimization on problems with noisy performance evaluation, focusing on unsupervised robotic learning. We adapt a technique of overcoming noise used in genetic algorithms for use with particle swarm optimization, and evaluate the performance of both the original algorithmand the noise-resistantmethod for several numerical problems with added noise, as well as unsupervised learning of obstacle avoidance using one or more robots.

Related material