There is an analogy between single-chip color cameras and the human visual system in that these two systems acquire only one limited wavelength sensitivity band per spatial location. We have exploited this analogy, defining a model that characterizes a one-color per spatial position image as a coding into luminance and chrominance of the corresponding three-colors per spatial position image. Luminance is defined with full spatial resolution while chrominance contains sub-sampled opponent colors. Moreover, luminance and chrominance follow a particular arrangement in the Fourier domain, allowing for demosaicing by spatial frequency filtering. This model shows that visual artifacts after demosaicing are due to aliasing between luminance and chrominance and could be solved using a pre-processing filter. This approach also gives new insights for the representation of single-color per spatial location images and enables formal and controllable procedures to design demosaicing algorithms that perform well compared to concurrent approaches, as demonstrated by experiments.