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Abstract

In this paper, we study the safety guarantees of group communication-based database replication
techniques. We show that there is a model mismatch between group communication and database,
and because of this, classical group communication systems cannot be used to build 2-safe database
replication. We propose a new group communication primitive calledend-to-end atomic broadcast
that solves the problem, i.e., can be used to implement 2-safe database replication. We also intro-
duce a new safety criterion, calledgroup-safety, that has advantages both over 1-safety and 2-safety.
Experimental results show the gain of efficiency of group-safety over lazy replication, which ensures
only 1-safety.
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1 Introduction

Database systems represent an important aspect of any IT infrastructure and as such require high avail-

ability. Software-based database replication is an interesting option because it promises increased avail-

ability at low cost. Traditional database replication is usually presented as a trade-off between perfor-

mance and consistency [12], i.e., between eager and lazy replication. Eager replication, based on an

atomic commitment protocol, is slow and deadlock prone. Lazy replication, which foregoes the atomic

commitment protocol, can introduce inconsistencies, even in the absence of failures.

However, eager replication does not need to be based on atomic commitment. A different approach,

which relies on group communication primitives to abstract the network functionality, has been proposed

in [30, 1], These techniques typically use an atomic broadcast primitive (also called total order broadcast)

to deliver and order transactions in the same serial order on all replicas, and offer an answer to many prob-

lems of eager replication without the drawbacks of lazy replication: they offer good performance [21],

use the network more efficiently [33] and also reduce the number of deadlocks [17].

Conceptually, group communication-based data replication systems are built by combining two mod-

ules: (1) a database module, which handles transactions and (2) a group communication module, which
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handles communication. When combined, these two module result in a replicated database. However,

the two modules assume different failure models, which means that the failure semantics of the resulting

system are unclear.

In this paper, we examine the fault tolerance guarantees offered by database replication techniques

based on group communication. The model mismatch between group communication and database sys-

tems comes from the fact that they originate from two different communities. We explore this mismatch

from two point of views: from the database point of view, and from the distributed system point of view.

Database replication is usually specified with the1-safetyand2-safetycriteria. The first offers good

performance, the second strong safety. However, group communication as currently specified, cannot be

used to implement 2-safe database replication. The paper shows how this can be corrected. Moreover,

we show that the 1-safety and 2-safety criteria can advantageously be replaced by a new safety crite-

rion, which we callgroup-safety. Simulation result show that group-safe database replication leads to

improved performance over 1-safety, while at the same time offering stronger guarantees.

The rest of the paper is structured as follows. Section2 presents the model for the database system

and for group communication, and explains the use of group communication (more specifically atomic

broadcast) for database replication. Section3 shows that this solution, based on current specification of

atomic broadcast, cannot be 2-safe. Section4 proposes a new specification for atomic broadcast, in order

to achieve 2-safety. Section5 defines the new safety criterion calledgroup-safety. Section6 compares

the efficiency of group-safe replication and 1-safe replication by simulation. Section7 discusses the

relationship between group-safe replication and lazy replication. Finally Section8 presents related work

and Section9 concludes the paper.

2 Model and Definitions

We assume that the overall system is built from three components (Figure1): the database component,

the group communication component and the replicated database component. The first two components

offer the infrastructure needed to build the application – in our case a replicated database. These two

infrastructure components are accessed by the application, but they have no direct interaction with each

other.

The replicated database component implements the actual replicated database and is described in

Section2.1. The database component contains all the facilities to store the data and execute transac-

tions locally, and is described in Section2.2. The group communication component offers broadcast

primitives, in particular atomic broadcast, and is described in Section2.3).
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Figure 1: Architecture

2.1 Database Replication Component

The database replication component is modelled as follows. We assume a set of serversS1, . . . , Sn, and

a fully replicated databaseD = {D1 . . . Dn}, where each serverSi holds a copyDi of the database.

We assume update-everywhere replication [12]: clients can submit transactions to any serverSi. Clients

wanting to execute transactiont send it to one serverSd that will act as thedelegatefor this transaction:

Sd is responsible for executing the transaction and sending back the results to the client.1 The correctness

criterion for the replicated database is one-copy serialisability: the system appears to the outside world

as one single non-replicated database.

2.1.1 Replication Scheme

A detailed discussion of the different database replication techniques appears in [34]. Among these

techniques, we consider those that use group communication, e.g., atomic broadcast (see Section2.3.4).

As a representative, we consider the technique calledupdate-everywhere, non-voting, single network

interaction. Figure2 illustrates this technique.2 The technique is callednon-votingbecause there is no

voting phase in the protocol to ensure that all servers commit or abort the transaction: this property is

ensured by the atomic broadcast group communication primitive.

The processing of transactiont is done in the following way. The clientC sends the transaction to

the delegate serverSd. The delegate processes the transaction, and, if it contains some write operations,

broadcasts the transaction to all servers using an atomic broadcast. All servers apply the writes according

to delivery order of the atomic broadcast. Conflicts are detected deterministically and so, if a transaction

needs to be aborted, it is aborted on all servers. Techniques that fit in this category are described in [19,

31, 27, 21, 3].

1The role of the delegate is conceptually the same than the primary server, simply any server can acts as a “primary”.
2 However, the results in this paper apply as well to the other techniques in [34] based on group communication.
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Figure 2: Non-Voting replication

2.1.2 Safety Criteria for Replicated Databases

There are three safety criteria for replicated database, called1-safe, 2-safeandvery safe[13]. When a

client receives a message indicating that his transaction committed, it means different things depending

on the safety criterion.

1-safe: If the technique is1-safe, when the client receives the notification oft’s commit, thent has been

logged and will eventually commit on the delegate server oft.

2-safe: If the technique is2-safe, when the client receives the notification oft’s commit, thent is guaran-

teed to have been logged onall availableservers, and thus will eventually commit on all available

servers.

Very safe: If the technique isvery safe, when the client receives the notification oft’s commit, thent is

guaranteed to have been logged onall servers, and thus will eventually commit on all servers.

Each safety criterion shows a different tradeoff between safety and availability: the more safe a

system, the less available it is.1-safereplication ensures that transactions can be accepted and committed

even if only one server is available: synchronisation between copies is done outside of the scope of the

transaction’s execution. So a transaction can commit on the delegate server even if all other servers are

unavailable. On the other hand,1-safereplication schemes can lose transactions in case of a crash. A

very safesystem ensures that a transaction is committed on all servers, but this means that a single crash

renders the system unavailable. This last criterion is not very practical and most systems are therefore

1-safe or 2-safe.
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The distinction between1-safeand2-safereplication is important. If the technique is1-safe, trans-

actions might get lost if one server crashes and another takes over, i.e., the durability part of the ACID

properties is not ensured. If the technique is2-safe, no transaction can get lost, even if all servers crash.

2.2 Database Component

We assume a database component on each node of the system, and each database component with a

full copy of the database. The database component executes local transactions and enforces the ACID

properties (in particular serialisability) locally.

We also assume that the local database component offers all the facilities and guarantees needed by

the database replication technique (see [34]), and has a mechanism to detect and handle transactions that

are submitted multiple times, e.g.,testable transactions[8].

2.3 Group Communication Component

Each serverSi hosts oneprocesspi, which implements the group communication component. While the

database model is quite well established and agreed upon, there is a large variety of group communication

models [11]. Considering the context of the paper, we mention two of them. The first model is the

dynamic crash no-recoverymodel, which is assumed by most group communication implementations.

The other model is thestatic crash-recoverymodel, which has been described in the literature, but has

seen little use in actual group communication infrastructure.

2.3.1 Dynamic crash no-recovery model

The dynamic crash no-recovery model has been introduced in the Isis system [5], and is also sometimes

called theview based model. In this model, the group isdynamic: processes can join and leave after the

beginning of the computation. This is handled by a list, which contains the processes that are member of

the group. The list is called theviewof the group. The history of the group is represented as a sequence

of viewsv0, . . . vm, a new view being installed each time a process leaves or joins the group.

In this model, processes that crash do not recover. This does not prevent crashed processes from

recovering. However, a process that recovers after a crash has to take a new identity before being able

the rejoin the group. When a crashed process recovers in a new incarnation, it requests a view change

to join the group again. During this view change, astate transferoccurs: the group communication

system requests that one of the current members of the view makes a checkpoint, and this checkpoint is

transferred to the joining process. Most current group-communication toolkits [5, 25, 32, 14, 4, 26] are

based on this model or models that are similar.
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Dynamic crash no-recovery group communication systems cannot tolerate the crash ofall the mem-

bers of a view. Depending on synchrony assumptions, if a view containsn processes, then at bestn − 1

crashes can be tolerated.

2.3.2 Static crash recovery model

In the static crash recovery model, the group isstatic, i.e., no process can join the group after system

initialisation. In this model, processes have access to stable storage, which allows them to save (part of)

their state. So, crashed processes can recover, keep the same identity, and continue their computation.

Most database system implement their atomic commitment protocol in this model.

While this model might seem natural, handling of recovery complicates the implementation. For this

reason, in the context of group communication, this model has mostly been considered in papers [2, 10].

Practical issues, like recovery, are not well defined in this model (in [28] the recovery is log based).

Because of the access to stable storage, static crash recovery group communication systems can tolerate

the simultaneous crash ofall the processes [2].

2.3.3 Process classes

In one system model, processes do not recover after a crash. In the other model, processes may recover

after a crash, and possibly crash again, etc. Altogether this leads us to consider three classes of processes:

(1) greenprocesses, which never crash, (2)yellow processes, which might crash one or many times,

but eventually stay forever up, and (3)red processes, which either crash forever, or are unstable (they

crash and recover indefinitely). Figure3 illustrates those three classes, along with the corresponding

classes described by Aguileraet al. [2]. Our terminology, with the distinction betweengreenandyellow

processes, fits better the needs of this paper. In the dynamic crash no-recovery model processes are either

green or red. In the static crash recovery model, processes may also be yellow.

Never
Crashes

Crashes &
Recovers

Crashes
Forever

Unstable

Good
Processes

Bad
Processes

Red
Processes

Green
Processes

Yellow
Processes

Aguilera & al
terminology

Our
Terminology

Process
Behaviour

Figure 3: Process Classes
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2.3.4 Atomic Broadcast

We consider that the group communication component offers an atomic broadcast primitive. Informally,

atomic broadcast ensures that messages are delivered in the same order by all destination processes.

Formally, atomic broadcast is defined by two primitivesA-broadcast and A-deliver that satisfy the

following properties:

Validity: If a processA-delivers m, thenm wasA-broadcast by some process.

Uniform Agreement: If a processA-delivers a messagem, then all non-red processes eventuallyA-

deliver m.

Uniform Integrity: For every messagem, every processA-delivers m at most once.

Uniform Total Order: If two processp andq A-deliver two messagesm andm′, thenp deliversm

beforem′ if and only if q deliversm beforem′.

In the following, we assume a system model where the atomic broadcast problem can be solved, e.g.,

the asynchronous system model with failure detectors [6, 2], or the synchronous system model [24].

2.4 Inter-Component Communications

Inter-component communication, and more specifically communication between the group communi-

cation component and the application component, is usually done using function calls. This leads to

problems in case of a crash, since a message might have been delivered by the group communication

component, but the application might not have processed it. To address this issue, we express the commu-

nication between the group communication layer and the application layer asmessages(Figure4). When

the application executesA-send(m) (A stands for Atomic Broadcast), it sends the message〈m, A-send〉

to the group communication layer. To deliver messagem to the application (i.e executeA-deliver(m)),

the group communication component sends the message〈m, A-deliver〉 to the application.

So, we model the inter-component (intra-process) communication in the same way as inter-process

communication. The main difference is that all components reside in the same process, and therefore fail

together. This inter-layer communication is reliable (no message loss), except in case of a crash.

3 Group communication-based database replication is not 2-safe

In this section, we show that traditional group communication systems cannot be used to implement

2-safe replication. There are two reasons for this. The first problem that arises when trying to build a
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Figure 4: Message exchange for atomic broadcast

2-safe system is the number of crashes the system can tolerate. The 2-safety criterion imposes no bounds

on the number of servers that may crash, but the dynamic crash no-recovery model does not tolerate the

crash of all servers. This issue can be addressed by relying on the static crash recovery model.

The second problem is not linked to the model, but related to message delivery and recovery proce-

dures. The core problem lies in the fact that the delivery of a message does not ensure the processing of

that message [29]. Ignoring this fact can lead to incorrect recovery protocols [15]. Note that this second

problem exists in all group communication toolkits (implemented in different models), which rely on the

state transfer mechanism for recovery, including partionnable group communication systems.
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Figure 5: Unrecoverable failure scenario

To illustrate this problem, consider the scenario illustrated in Figure5. Transactiont is submitted

on the delegate serverSd. Whent terminates,Sd sends a messagem containingt to all replicas. The

messagem is sent using an atomic broadcast. The delegateSd deliversm, the local database component

locally logs and commitst and confirms the commit to the client: transactiont is committed in the

database component ofSd. ThenSd crashes. All other replicas (S2 andS3) deliverm, i.e., the group

communication components ofS1, S2 andS3 have done their job. FinallyS2 andS3 crash (before
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committingt), and later recover (beforeSd).

The system cannot rebuild a consistent state that includest’s changes. ServersS2 andS3 recover to

the state of the databaseD that does not include the execution oft. Messagem that containedt is not

kept in any group communication component (it was delivered everywhere) andt was neither committed

nor logged on serversS2 andS3: the technique is not 2-safe.

In this replication scheme, when a client is notified of the commit of transactiont, the only guarantee

is thatt was committed by the delegateSd. The use of group communication does not ensure thatt will

commit on the other servers, but merely that the messagem containingt will be deliveredon all servers

in the view. If those servers crash after the time ofm’s delivery and beforet is actually committed or

logged to disk, then transactiont is lost. In the scenario of Figure5, if the recovery is based on thestate

transfer mechanism(Sect.2.3.1), there is no available server that has a state containingt’s changes. If

recovery is log-based (Sect.2.3.2), the group communication system cannot deliver again messagem

without violating the uniform integrity property (m cannot be delivered twice).

The problem lies in the lack of end-to-end guarantees of group communication systems described by

Cheriton and Skeen [7]. Group communication systems enforce guarantees on the delivery of messages

to the application, but offer no guarantees with respect to the application level: 2-safety is an application

level guarantee.

4 Group Communication with end-to-end guarantees for 2-safe replica-
tion

We have shown in the previous section that it is impossible to implement a 2-safe database replication

technique using a group communication toolkit that offers a traditional atomic broadcast. In order to

build a 2-safe replication technique, we need to address the end-to-end issue.

4.1 Ad-hoc solution

One way to solve the problem would be to add more messages to the protocol: for instance each server

could send a message signalling thatt was effectively logged and will eventually commit. The delegate

Sd would confirm the commit to the client after receiving those messages. While such an approach could

work, it has two drawbacks. First the technique would have a higher latency because of the additional

waiting: synchronisation between replicas is expensive [33]. But most importantly, this approach ruins

the modularity of the architecture. The point of using a group communication system is to have all

complex network protocols implemented by the group communication component and not to clutter

the application with communication issues. If additional distributed protocols are implemented in an
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ad-hoc fashion inside the application, they risk being less efficient (some functionality of the group

communication will be duplicated inside the application, in this case, acknowledgement messages), and

less reliable (distributed system protocols tend to be complex; when implemented in an ad-hoc fashion,

they might be incorrect).

4.2 End-To-End Atomic Broadcast

The problem of lost transactions appears when a crash occurs between the time a message is delivered

and the time it is processed by the application. When a message is delivered to the application and

the application is able to process the message, we say that the delivery of the message issuccessful.

However, we cannot realistically prevent servers from crashing during the time interval between delivery

and successful delivery. In the event of a crash, messages that were not successfully delivered must be

delivered again: we have to make sure that all messages are eventually delivered successfully.

With current group communication primitives, there is no provision for specifying successful de-

livery. For this reason, we introduce a new inter-component message that acknowledges the end of

processing ofm (i.e., successful delivery ofm). We denote this messageack(m). The mechanism is

similar to acknowledgement messages used in inter-process communications. Figure6 shows the ex-

change of messages for an atomic broadcast. First, the application sends messagem, represented by the

inter-component message〈m, A-send〉 to the group communication system. When the group commu-

nication components is about to deliverm, it sends the inter-component message〈m, A-deliver〉. Once

the application has processed messagem, it sends the inter-component message〈m, ack〉 to signal that

m is successfully delivered.

Group
Communication

Component

Application

< m, A-send> < m, A deliver > < m, ack >

Figure 6: Messages exchange for with successful delivery

If a crash occurs, and the group communication component did not receive the message〈m, ack〉,

then〈m, deliver〉 should be sent again to the application upon recovery. This requires the group com-

munication component to log messages and to use log-based recovery (instead of checkpoint-based re-

covery). So after each crash, the group communication component “replays” all messagesm such that
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〈m, ack〉 was not received from the application. By replaying messages, the group communication com-

ponent ensures that, if the process is eventually forever up, i.e., non-red, then all messages will eventually

be successfully delivered.

We call the new primitiveend-to-end atomic broadcast.The specification of end-to-end atomic

broadcast is similar to the specification of atomic broadcast in Section2.3.4, except for (1) a new end-

to-end property, and (2) a refined uniform integrity property: a messagem might be delivered multiple

times, but can only be deliveredsuccessfully once. A messagem is said to besuccessful deliveredwhen

ack(m) is received. The new properties are the following:

End-to-End: If a non-red processA-delivers a messagem, then it eventuallysuccessfullyA-delivers m.

Uniform Integrity For every messagem, every processsuccessfullyA-delivers m at most once.

We assume a well-behaved application, that is, when the application receives message〈m, A-deliver〉

from the group communication component, it sends〈m, ack〉 as soon as possible.

4.3 2-Safe Database Replication using end-to-end atomic broadcast

2-safe database replication can be built using end-to-end atomic broadcast. The replication technique

uses the end-to-end atomic broadcast instead of the ”classical” atomic broadcast. The only difference

is that the replication technique must signal successful delivery, i.e., generateack(m). This happens

when the transactiont contained inm is logged and is therefore guaranteed to commit. According to the

specification of the end-to-end atomic broadcast primitive, every non-red process eventually successfully

deliversm. The testable transactionabstraction described in Section2.2 ensures that a transaction is

commited at most once. So every process that is not permanently crashed or unstable eventually commits

t exactly once: the technique is 2-safe.
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Figure 7: Recovery with end-to-end atomic broadcast
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Figure7 shows the scenario of Figure5 using end-to-end atomic broadcast. After the recovery of

serversS2 andS3, messagem is delivered again. This time,S2 andS3 do not crash, the delivery ofm is

successful andt is committed on all available servers.

5 A new safety criterion: group-safety

We have shown in Section3 that the techniques of Section2.1.1based on traditional group communica-

tion are not 2-safe. They are only 1-safe: when the client is notified oft’s commit,t did commit on the

delegate server. As shown in Section4, 2-safety can be obtained by extending group communication with

end-to-end guarantees. However, group communication without end-to-end guarantees, even though it

does not ensure 2-safety, provides an additional guarantee that is orthogonal to 1-safety and 2-safety. We

call this guaranteegroup-safety.

5.1 Group Safety

A replication technique isgroup-safeif, when a client receives confirmation of a transaction’s commit,

the message that contains the transaction is guaranteed to bedelivered(but not necessarily processed)

on all available servers. In contrast, 2-safety guarantees that the transaction will beprocessed(i.e.,

committed) on all available servers. Group-safety relies on the group of servers to ensure durability,

whereas 2-safety relies on stable storage. With group-safety, if the group does not fail, i.e., enough

servers remain up,3 then durability is ensured. Notice that group safety does not guarantee that the

transaction was logged or committed on any replica. A client might be notified of the termination of

some transactiont beforet was actually logged on any replica.
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Table 1: Summary of different safety levels

The relationship between group-safety, 1-safety and 2-safety is summarised in Table1. We use two

3 The number depends on the system model and on the algorithm used.
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criteria: (1) the number of servers that are guaranteed todeliver the (message containing the) transaction

(vertical axis), and (2) the number of servers that are guaranteed to eventuallycommitthe transaction

(horizontal axis), that is the number of servers that have logged the transaction. We distinguish a transac-

tion deliveredon (one, all) replicas, and a transactionloggedon (none, one, all) replicas. A transaction

cannot be logged on a site before being delivered, so the corresponding entry in the table is grayed out.

For each remaining entry in the table the corresponding safety level is indicated:

No Safety: The client is notified as soon as the transactiont is delivered on one serverSd (t did not yet

commit). No safety is enforced. IfSd crashes beforet’s writes are flushed to stable storage, thent

is lost. We call this0-safereplication.

1-Safe: With 1-safety, the client is notified when transactiont is delivered and logged on one server

only, the delegate serverSd. If Sd crashes, thent might get lost. Indeed, whileSd is down, the

system might commit new transactions that conflict witht: t must be discarded whenSd recovers.

The only alternative would be to block all new transactions whileSd is down.

Group-Safe: The client is notified when a transaction is guaranteed to be delivered on all available

servers (but might not be logged on any servers). If the group fails because too many servers

crash,4 then t might be lost. Group-safe replication basically allows all disk writes to be done

asynchronously (outside of the scope of the transaction) thus enabling optimisations like write

caching. Typically, disk writes would not be done immediately, but periodically. Writes of adjacent

pages would also be scheduled together to maximise disk throughput.

Group-Safe & 1-Safe: The client is notified when transactiont is guaranteed to be delivered on all

serversand was logged on one server, the delegateSd and thus will eventually commit onSd.

Since the system is both group-safe and 1-safe, we call this safety levelgroup-1-safety. With

group-1-safety, the transaction might be lost if too many servers servers,including Sd, crash. A

transaction loss occurs either ifSd never recovers, or the system accepts conflicting transactions

while Sd is crashed. Most proposed database replication strategies based on group communication

fall in this category [9, 27, 20, 23, 16].

2-Safe: The client is notified when a transaction is logged on all available servers. Even if all servers

crash, the transaction will eventually commit and therefore cannot get lost.

If we consider the number of crashes that can be tolerated, we have basically three safety levels

(Table2):
4The number depends on the system model, typically a majority of servers.
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• 0-safe and 1-safe replication cannot tolerate any crash, i.e., one single crash can lead to loose a

transaction.

• Group-safe replication cannot tolerate the crash of alln servers.

• 2-safe replication can tolerate the crash of alln servers.

Tolerated Number of Crashes Safety Property
0 crashes 0-safe, 1-safe

less thann crashes group-safe, group-1-safe
n crashes 2-safe

Table 2: Safety property and number of crashes

5.2 Group Safety is preferable to Group-1-Safety

Group-safe as well as group-1-safe replication techniques cannot tolerate the crash of all servers. So,

what is the real difference between both criteria? Table3 summaries the conditions that lead to the loss

of the transaction, using two criteria: (1) failure of the group (typically failure of a majority of servers)

and (2) failure of the delegate serverSd. The difference appears in the middle column (failure of the

group, but not ofSd).

Group communication-based replication scheme are specially interesting in update-everywhere set-

tings, where the strong properties of atomic broadcast are used to handle concurrent transactions. If the

replication is update-everywhere, then all serversS1 . . . Sn might be the delegate server for some trans-

action.5 If the group fails, at least one server crashed, and this server might be the delegate serverSd

for some transactiont so the middle column conceptually does not exist. In such settings it makes little

sense to deploy a group-1-safe replication technique.

Group Safe

Group 1-Safe

Group does
not fail

Group fails
Sd does not

crash

Group fails
Sd crashes

No Transaction Loss

Possible

Transaction Loss

Table 3: Safety of comparison between group safety and group-1-safety

5This is not the case with theprimary-copytechnique.
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The replication technique illustrated in Figure2 ensures group-1-safety. It can be transformed into

group-safe-only quite easily. Figure8 illustrates the group-safe version of the same technique. Read

operations are typically done only on the delegate serverSd before the broadcasting, writes are executed

once the transactions is delivered by the atomic broadcast. The main difference with Figure2 is the

response to the client, which is sent back as soon as the transactions is delivered by the atomic broadcast

and the decision to commit/abort the transaction is known. The observed response time by the client

is shortened by the time needed to write the decision to disk. The performance gain is shown by the

simulation results presented in Section6.
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Figure 8: Group Safe Replication

6 Performance Evaluation

In this section we compare the performance of group-safety, group-1-safety and 1-safety (i.e., lazy repli-

cation). The evaluation is done using a replicated database simulator [33]. The group communication-

based technique is the database state machine technique [27], which is an instance of the replication

technique illustrated on Figure2 (for group-1-safety) and Figure8 (for group-safety). The setting of the

simulator are described in Table4. The load of the system is between 20 and 40 transactions per second;

the network settings correspond to a 100 Mb/s LAN.

Figure 9 shows the results of this experiment. TheX axis represents the load of the system in

transactions per second, theY axis the response time, in milliseconds. Each replication technique is

represented by one curve. The results show that group-safe replication has very good performance: it

even outperforms lazy replication when the load is below 38 transactions per second. The abort rate

of the group-safe technique was constant, slightly below 7%. As the lazy technique does no conflict

handling, abort rate is unknown. The very good performance of the group safe technique is due to the
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Parameter Value

Number of items in the database 10’000
Number of Servers 9

Number of Clients per Server 4
Disks per Server 2
CPUs per Server 2

Transaction Length 10 – 20 Operations
Probability that an operation is a write 50%
Probability that an operation is a query 50%

Buffer hit ratio 20%
Time for a read 4 - 12ms
Time for a write 4 - 12ms

CPU Time used for an I/O operation 0.4ms
Time for a message on the Network 0.07ms
CPU time to send/receive a message 0.07ms
Time for a broadcast on the Network 0.07ms
CPU time to send/receive a broadcast 0.07ms

Table 4: Simulator parameters

asynchrony of the writes (the writes to disk are done outside the scope of the transaction). In high-load

situations, group-safe replication becomes less efficient than lazy replication. The results show also that

group-1-safe replication behaves significantly worse than group-safe replication: the technique scales

poorly when the load increases.

To summarise, the results show that transferring the responsibility of durability from stable storage

to the group is a good idea in a LAN: in our setting, writing to disk takes around 8ms, while performing

an atomic broadcast takes approximately 1ms.

7 Group-safe replicationvs. lazy replication

On a conceptual level, group-safe replication can be seen as a complement to lazy replication. Both

approaches try to get better performance by weakening the link between some parts of the system. Fig-

ure 10 illustrates this relationship. Group-safe replication relaxes the link between server and stable

storage: when a transactiont commits, the state in memory and in stable storage might be different (t’s

writes are not committed to disk, they are done asynchronously). Lazy replication relaxes the link be-

tween replicas: when a transaction commits, the state in the different replicas might be different (some

replicas have not seen transactiont; t’s writes are sent asynchronously). The two approaches relax the

synchrony that is deemed too expensive.

The main difference is the condition that leads to a violation of the ACID properties. In an update-
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everywhere setting, a lazy technique can violate the ACID properties even if no failure occurs. On the

other hand, a group-safe replication will only violate this ACID properties if the group fails (too many

servers crash). Group-safe replication has another advantage over lazy replication. With lazy replica-

tion in an update-everywhere setting, if the number of servers grow, the chances that two transaction

originating from two different sites conflict grows. So the chances that the ACID properties are violated

grows with the number of servers. With group-safe replication the ACID properties might get violated if

too many servers crash. If we assume that the probability of the crash of a server is independent of the

number of servers, the chance of violating the ACID properties decreases when the number of servers in-
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Figure 10: group-safe replication and lazy replication
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creases. So, the chances that somethingbadhappens increases withn for lazy replication, and decreases

with group-safe replication.

8 Related Work

As already mentionned, traditional database replication is usually either (i) 2-safe and built around an

atomic commitment protocol, or (ii) does not rely on atomic commitment and is therefore 1-safe [13].

As the the atomic commitment protocol is implemented inside the database system, coupling between

database and communication systems is not an issue in these protocols. Note that techniques have been

proposed to improve atomic commitment using group communication [18].

The fact that 2-safety does not require atomic commitment has been hinted at in [35]. The paper

explores the relationship between safety levels and the semantics of communication protocols. However,

the distinction between 2-safety and the safety properties ensured by traditional group communication

does not appear explicitely in the paper.

The Disk Paxos[10] algorithm can also be loosely related to 2-safety, even though the paper does

not address database replication issues. The paper presents an original way, using stable storage, to

couple the application component with a component solving an agreement problem. However, the pa-

per assumes a network attached storage, wich is quite different from the model considered here, where

each network node only has direct access to its own database. The issue of connecting the group com-

munication component and the database component can also be related to theexactly onceproperty in

three-tier applications [8]. Our group communication system and database system can be seen as two

tiers co-located on the same machine that communicate using messages.

While the notion of group safety is formally defined here, existing database replication protocols

have in the past rely on this property, e.g., [22, 15]. In [3] a mechanism to synchronise the database with

the group communication system is presented in the context of partitionable membership systems. The

mechanism is used to handle merges between partitions; the case of a total crash is not considered. None

of these protocols ensure 2-safety.

9 Conclusion

In this paper, we have shown that traditional group communication primitives are not suited for building

2-safe database replication techniques. This led us to introduceend-to-end atomic broadcastto solve

the problem. We have also shown that, while traditional group communication (without end-to-end

guarantees) are not suited for 2-safe replication, they offer stronger guarantees than 1-safety. To formalise
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this, we have introduced a new safety criterion, calledgroup-safetythat captures the safety guarantees

of group communication-based replication techniques. Performance evaluation show that group-safe

replication compares favourably to lazy replication, while providing better guarantees in terms of the

ACID properties.
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