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This paper introduces a computationally efficient technigque for splitting a signal
into N equally spaced sub-bands suksampled by 1/N and for achieving near perfect re-
construction of the original signal from the sub-band signals. We show that the pro-
posed scheme behaves in a way similar to that of conventional guadrature mirror
filters, but that the implementation may be greatly simplified by using a multirate

filtering technique which exploits the special structure of the sub-band filters.

1. INTRODUCTION

Conventional quadrature mirror filter (QMF}
banks are now widely used in many digital si-
gnal processing applications, particularly in
relation to speech compression [1]. These banks
divide the signal into N adjacent sub-bands
subsampled by 1/N, and allow the reconstruction
of the original signal from the N sub-band si-
gnals with negligibkle distorsicn, regardless

of the order of band-pass filters. The alias-
free reconstruction condition is met only when
the equal bandwidth band-pass filters are deri-
ved by a radix-2 tree decomposition technique
from a half-band low-pass filter prototype.
With this particular filter structure; the fil-
ter bank can be implemented either as a radix-
2 tree [1-2] or with direct realization of the
band-pass filters defined by the tree decompo-
sition technigue [3].

In this paper, we expand on earlier work [4] to
show that it is possible to devise a filter
bank which has nearly the same alias-free re~
construction properties as the conventional
QMF, but with the band-pass filters derived by
frequency shifting from a prototype low-pass
filter. It is then shown that the special struc-
ture of the band-pass filters yields a multi-
rate implementation [5] which is more efficient
than the conventional QMF apprcach or the poly-
phase technique proposed in [6].

2, THE PSEUDO-CMF FILTER BANK

.We consider a signal x(t) which is band-limited
to a frequency fs/2 and sampled at rate fs,

with wy = 2‘nfS = 2ﬂ/Ts. We want to split the

sampled input signal inte an even number N of

sub-band signals yzk(Nn) ang yN—l-2k(Nn) sub-

sampled at rate fs/N, by using N equally spaced

adjacent band-pass filters with impulse re-

sponses th(nJ and hN—l—Zk(n)' and with

k=0, ..., N2 = 1. The signal splitting must
be done in such a way that a near perfect ap-
proximation %(n) of the original signal =(n)
may be reconstructed from the subsampied chan-
nel signals.

In the following, we shall use a bank of N real
band-pass filters where the even-numbered fil-
ters h2k(n) are derived by frequency transla-

tion (fig. 1) frcm a prototype low-pass filter
h(n)} with cut-off frequency at fs/éN, and with

hzk(n) = hn} ;os[Zﬂ(4k+l)(2n+l)/8N} (1)

The odd-numbered band-pass filters are derived
from the even-numbered band-pass filters by a
modulation at frequency fs/2, with

n Iy
By yope ™ = (=1 7hy (0) : (2)

Under these conditions, the z-transforms of the
band-pass filters are given as a function of
the z-transform H{z) of h{n) by
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HZk(Z) =3 H(W z)}
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+ g_ H(W2(4k+l)z) (3)
HN-1—2k(z) = Ezk(-z) (4)
with
W o= e-joY/BN , j = '/:1 (5)

The subsampled channel signals, with z-trans-

form- sz(z) and YN—l-Zk(z) are derived from

the input signal x(n) with z-transform X(z}, by

a filtering operation with the filter sz(z),

HN—1—2k(Z)' followed by a decimation [7] where

N-1 out of every N consecutive channel samples

are dropped. Thus, sz(z) and YN—l—2k(Z} are

given by
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We show now that it is possible to reconstruct

a signal %(n), with z=transform X{z), from the

N channel signals, in such a way that %(n) is
almost perfectly identical te x{n}. This is done
as shown in figure 2, by inserting N~1 zero-
valued samples between successive samples of the
channel signals, by filtering the resulting

even sequences with the filters of z-transforms
sz(z), and the odd seguences with the filters

of z-transforms - {z), and finally by

H
N-1-2k
summing the resulting signals. Hence

N/2-1 N-1

%(z) = — T r [Ilw
4N k=0 u=0

. w-(4k+l) 2(4k+4u+1)z)]

+ - —dut
4k lH(W 2{4k-4u l)z)

B(W

+ —
w4k lH W 2(4k+1)z

! (
G R

)]

W2(4k+l)z)]]

-2 (4k-4u+l)
z

{
dk+1
H )

-[[w (-wW
) (_w2{4k+4u+l)z)]

- (4k+1
4w Ry

4k+1 -2 (4k+
[ Ly (2 (D)

— +1
+ W (4k )H

)

2(4k+1) u
W

(- 2 1% ) (8)
In order to eliminate the aliasing terms in the
reconstructed signal, we must insure that the
coefficients of ¥ (w8Uz) in (B) are zero, except
for u=o. With conventional QMF, the aliasing
terms are completely eliminated. In our approach,
we relax slightly this condition by insuring
that the aliasing terms corresponding to adja-
cent filters are completely eliminated and by
designing the prototype low-pass filter H(z) in
such a way that non-adjacent band-pass filters
do not overlap, with

HE ) = 0 for |al > 4 (9)

Under these conditions, we have H{Waz)H(z) =
for lal » B, and (8) reduces to
N-1

T 8
X{z) = l'[G (2)%¥(z) + I G (z)X{W Y1 (10)
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. us=l
with N/2-1 , )
GO(ZI = i (H2k(2) - HZk(—z)) {11)
k=0
and for u # C, 5
N/2-1
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For u even, the only non-zero producté in (12}
appear for k = u/2 and k = (N-u)/2, thus, (12)
reduces to

Gu(z) = %{H(W4unzz)H{N4u+2z)
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Similarily, the only non-zerc products that
appear in (12) for u odd correspond to
k = (u-1)/2 and the correspording terms cancel
out. Therefore, the aliasing terms disappear
completely provided the prototype low-pass
filter has zero transmission above twice its
jdeal cut-off freguency, a condition which is
easily met in practice, and the reconstructed
signal reduces to

G, (z)X (2
Xiz) = _Qi_l_i_L (14)
N
In order to achieve perfect reconstruction, we
must now insure that G,(z) has a flat frequency
response.

We assume here that the prototype L-tap low-
pass filter hin) is a linear phase filter such
that

L = 4pN (15)

Then, it can be seen from {1) that the band-
pass filters h2k(n) are alsc linear phase,
since

L-1-n} = h
th( 1-n} 2k(n) (16)
Under these conditions, the evalutation of
Golz}, defined by (11), on the unit circle
yields
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k=0
2 w '
+S
+ HZk(w TTJ] (17)
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where H_ (w) is the magnitude of H (e ). In

order to have a flat frequency Iesponses the
filters must be such that
N/2-1 2 2 Wy
z [8° (w) + B, {w + =] = constant (18)
k=0 2k 2k 2 )

This condition is very similar to the usual
requirement for flat response with conventional
OMF filters. It implies that H{w) is set at

- 3 @B at frequency fs/4N, and that

2 wS 2 mS wS
Ew+ ) +H =70 =1 for lw] < = (19
With this condition, the freguency response is
flat except near £ = 0 and £ = fS/2 where the




“two shifted spectra of the prototype filter
overlap. Thus, with the exception of the two
edges of the spectrum, the signal is perfectly
reconstructed, with a total delay of L-]1 samples
and a multiplicative factor equal to 1/4N. In
most applications such as speech compression,
the imperfect reconstruction at both edges of
the spectrum causes no problems because the low-
est and the highest band-pass filters are not
used.

3. MULTIRATE IMPLEMENTATION

Since the analysis and reconstruction process
are nearly identical, we shall restrict here
our discussion to the analysis filter bank. The
subsampled even and odd channel signals are gi-
ven respectively by

L-1
YZk(Nm} = I n(n)cos[27(4k+1) (2n+l)/8N]
P=0 o (men) (20)
L-1 n )
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The computation of (20} and (21) is done by
evaluating separately the terms which correspond
to n even and odd, with
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Since L = 4-pN, we can change index n in
(24-25), with

n=Nn +n s . =0, ..., 2p -1,

1 2 1
n, =0, ..., N-1 (26}
2 .
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each of these expressions reduces into N filters
of length 2p, plus one modified cosine transform
with
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2
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With this approach, the N length-L band-pass
filters are replaced by 2N filters of length
L/2N, plus two modified cosine transforms.

The modified cosine ‘transform (29) can be compu-
ted by taking the real part cf a DFT (discrete
Fourier transform) of size N/2, with
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The modified cosine transform (31) is computed
similarily. Thus, each modified cosine trans-
form is computed with N/2 complex multiplica-

tions by wgé, N/2 complex multiplications by
4k+
WBN . and one DFT of size N/2 (figure 3).

4. APPLICATION TO THE SUB-BAND CODING OF
BASEBAND SPEECH

As an application of the pseude-QMF technique,
we consider here the coding of baseband speech
into B sub-bands which span the frequency range
0-1000 Hz for use with a voice-excited vocoder.
Using a suboptimum 64-tap prototype low-pass
filter designed in the fregquency demain, the
frequency response is flat, with a ripple which
does not exceed #0,2 dB and a rejection of the
main aliasing terms in excess of 40 dB.

The input signal is sampled at 2000 Hz. Since
the B band-pass filters are reduced to 16 fil-




Yers of 4 taps operating at the sampling rate
2000/8 Hz, the number of operations in the fil-
ter is 16000 multiplications per second and
12000 additions per second. Each modified dis-
crete cosine transform is computed with one
4~point DFT, 4 complex premultiplications by

4k+1
2, and 4 complex postmultiplications by W .

N
k) are implementeg
8N
with only 2 real multiplications and 1 real ad-
dition, since we take only the real part of the
output. Using a complex multiplication algorithm
with 3 real multiplications and 3 real additions,
the premultiplications are computed with 8 real
multiplications and 8 real additicns. Thus, each
DCT is evaluated with 16 real multiplications
and 28 real additions, which gives for the two
DCT's a computation rate of 8000 multiplications
per second and 14000 additions per second. In-
cluding the 8 additions (22-23}, this gives a
total of 24000 real multiplications per second
and 28000 real additions per secend. This is
less than half the number of operations required
with a conventional implementation using the
symmetries ©f the filters.

n
on
The multiplications by W

5. CONCLUDING REMARKS

We have shown that it is possible to reduce si-
gnificantly the computational complexity of QMF
filter banks by using an approach where the
band-pass filters are derived by frequency
translation from a prototype low-pass filter.
This technique provides perfect cancellation of
the aliasing terms only when the band-pass fil-
ters do not overlap over ncn adjacent filters.
In practice, this restriction is not very se-
vere, and we have shown on an example that one
can achieve specifications which are comparable
to those of conventional QMF filter banks.
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Figure 1l: Frequency domain representation of the prototype
{(a) and of the band-pass filters
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Figure 2: Block diagram of the splitting and reconstruction

process.
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