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Abstract: Perfect reconstruction filter banks are analysis-
synthesis systems with M channels and subsampling by V
that have an input-output transfer function equal to a de-
lay. In this paper, FIR filter structures are given that will
guarantee perfect reconstruction and meet additional con-
straints like linear phase and/or frequency symmetries. Re-
cursive structures are derived that will generate filter banks
of any order satisfying the desired properties. The compu-
tational complexity of these structures is studied as well.

I Introduction

An analysis-synthesis system with M channels subsam-
pled by IV is depicted in figure 1. The case of most inter-
est appears when N = M, that is, the system is critically
subsampled, and we will be only considering this case in
what follows. Furthermore, we will restrict both the analy-
sis and the synthesis filters to be FIR, While such systems
have been used in speech coding for quite sometime with so-
called quadrature mirror filters (QMF) (3], solutions allow-
ing perfect reconstruction are more recent [8,9,10,14,15,12],

In the simple, yet important case of two channels (V =
2), there are basically 2 solutions of interest: one which
leads to a pair of minimum/maximum phase filters [8,9],
and one which yields linear phase filters [14]. The first case
yields a matrix of polyphase components [3,15] which is
paraunitary [12], while it is easy to show that the second
case is not, and that actually there is no paraunitary and
linear phase solution for the case ¥V =2,

When the polyphase matrices are paraunitary, then
they can be factored into cascades of unitary matrices and
diagonal matrices of delays [1,12]. Therefore, nice cascaded
lattice structures can be obtained for perfect reconstruction

filter banks based on these paraunitary polyphase matrices
[12,13]

[n what follows, we first derive a cascade structure that
generates perfect reconstruction, linear phase filter banks
for N = 2. Then, this structure is generalized to N > 2,
where it turns out that linear phase paraunitary solutions
exist. As a further design constraint, we then require that
the i-th and (VN — i)-th filters are related by modulation.
Again, this is possible for N > 2, even with an additional
linear phase constraint. Finally, the computational com-
plexity of the various structures is discussed.

II Analysis Framework

Let us consider a z-transform analysis of the system
in figure 1. A filter with z-transform H;(z) followed by a
subsampling by N is best described by its decomposition
into polyphase components H; ;(zV) (3,15,12].
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N-1
Hz) =) Hiu(zV)z" (1a)
k=0
H,-,;.{zN) = Z h:‘,h-,-m\rz-mv (1b)
n=1_

where h; n are the elements of the impulse response of the
i-th filter. For example, an unit impulse at time —k will
generate an output in the subsampled domain equal to the
k-th polyphase component, that is H,.(z). We can now
define the following polyphase component matrix for the
analysis filter bank:

Hyo(z) Hy n-1(2)
Hio(z) Hy n-i(2)
Hy(z) = : . (2a)
Hpg_10(2) Hyrov,v-1(2)

and, with an inversion of the order of the polyphase com-
ponents, the polyphase matrix for the synthesis filter bank:

Go,nv-a(2) ga.u(ﬂ
G1 14z Zz
Go(2) = .N- (z) 1.?( ) (28)
Gar-1,n-1(2) Gar-1,0(2)

Note that we always number row and columns starting from
0. It can be verified that a sufficient condition so that the
analysis/synthesis system of fig. 1 is a perfect reconstruc-
tion system is that [12,15]:

[Gp(z)]T'Hp{:}=7--i'I - (3)

A necessary and sufficient condition for perfect reconstruc-
tion filter banks where the analysis and synthesis filters are
equal {within time reversal) is that H,(z) satisfies [12,16]:

{Hp(‘_l)]T'HP(Z}=I (4)

Obviously in this case Gp(z) can be chosen as:

Gp(z) =277 - Hy(z7") ()

where m is chosen so that G,(z) leads to causal synthesis
filters, and therefore, (3) is satisfied with [ = m. Conversely
if Gp(z) satisfies (5), i.e. perfect reconstruction is achieved
with identical analysis and synthesis filter, then H,(z) sat-
isfies (4). In the case of critical sampling (M = N) a ma-
trix Hp(z) that satisfies (4) is called a paraunitary matrix
(12] and the product in (4) is commutative since Hy(z) is

square. In the following, only critically sampled systems
(M = N) will be considered.
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IIT The Two Channel Case, N =2

Let us first recall the paraunitary solution: in that
case, the polyphase matrix H,(z) of the analysis filters can
be written as [12,13]:

mo=(L ) IG 2 (4 9o

This leads to minimum/maximum phase filters of length
L = 2K. Note that (6) is a denormalized version, since the
rotation matrices don’t have unit length vectors. This can
be taken care of at the reconstruction, with the polyphase
matrix of the synthesis filters chosen as [12,13]:

1 1 oy
Gs(2) = 1+a§'(—ﬂo 1 )

K-1

T (L ) o

k=1

The product [G,(z)]7T - Hy(z) (see (3)) is equal to:

[GP(Z)]T “Hy(z2) = K-V (8)

and perfect reconstruction is achieved with a delay of L —1
samples. Let us now consider linear phase filters, that is, for
N = 2, two filters Hy(z) and H;(z) obtained from H,(z):

Ho(z)\ _ (Hopo(2?) Hyo(z2)) [ 1 (9)
Hi(z) ) = \ Hio(z?) Hya(z?) z7}
and that are symmetric or antisymmetric (one of each).

Then, it is easy to verify that H,(z) has to satisfy (assum-
ing even length filters):

(; _01>'[z""Hp(~'-_l}]‘(? é)“‘ﬂ” (10)

where k is the highest degree in H,(z) (note that a sign
change in (10) is possible). We will now develop a recursive
procedure to obtain linear phase filters of any even length
which guarantee perfect reconstruction:

i) assume Hp(z) satisfies (10)

ii) then Hy(z) given by:

me =56 (5 %) (4 9)

satisfies (10) as well,

(11)

The proofis straightforward by replacing (11} into (10)
and verifying that it holds indeed. Note that for L = 2, the
two only possible filters are given by Hy(z) = 1+ z~! and
Hy(z) =1 - z71 (or scaled versions thereof) and therefore,
a possible way to obtain length L = 2K linear phase perfect
reconstruction filters is by writing H,(z) as:

=04 TG o) T) o
and G,(z) as:

GP("-) =

11 1\ [/ o0 1 —ay 1
5'(1 "1).,,]'.11( 0 1)('“* 1 ).l—ﬂk"(m)
Therefore, the product (3) is satisfied and equal to
(8). Note that while this is not a paraunitary solution, the
synthesis filters are simply related to the analysis filters by
a modulation with (=1)™: '
Go(z) = Hi(—2) Gy(z) = —Ho(-z) (14)
The first few filters obtained from (12) are given in
table I. Note that if one wants odd length filters (one of
length 2N + 1 and the other of length 2N — 1) a zero can
be exchanged between Hy(z) and H;(—z) since this will
not alter the perfect reconstruction property. For example,
starting with Ho(z) =1+3z71+3z72+:7% and H (z) =
14 3z71 —3z7% — z73 | one can obtain H{(z) = 1 +
2z73 46272 + 2273 4+ z7% and H{(z) = 1 - 2z7% 4+ z7?
by exchanging a zero at z = —1 in Hy(z) into a zero in
H{(-z). This technique has been used in [6] to derive good

and efficient filters for sub-band coding of images.

Having derived a possible generic structure for linear
phase filters, one may want to know its generality. Be-
cause H,(z) is not paraunitary, there is no factorization
theorem that can be used. Also, very particular perfect re-
construction pairs can be generated (for example, via the
complementary filter method [15]) that would lead to sin-
gular factors in (12). However, such cases turn out to be
degenerated and thus of little practical interest,

In conclusion of this section on the two channel case,
note that while previous techniques existed to find linear
phase perfect reconstruction filters (like the complementary
filter method or the factorization method [15]) the above re-
cursive form structurally guarantees perfect reconstruction
(similarly to the paraunitary case [13]). Also, the factors
a; can be chosen so as to minimize the resulting hardware
complexity of an implementation.

IV Linear Phase Solutions, N > 2

Similarly to (10), a polyphase matrix that leads to lin-
ear phase filters has to satisfy (we assume N even, and that
the first N/2 filters are symmetric while the last N/2 are
antisymmetric):

0 -I (15)

(5 &) &t me o =m0
where I is the identity matrix of size N/2 and J is the
antidiagonal matrix of size N, In order to recursively gen-
erate polyphase matrices that satisfy (15), we write a new
polyphase matrix H(z) as:

(16)

where H,(z) satisfies (15), D(z) is a diagonal matrix of
delays and R is a unitary matrix. In that case, the following

two conditions are necessary and sufficient for Hy(z) to
satisfy (15} as well:

H,(z) = Hp(z) - D(z) 'R



z71.J-D(z7')-J = D(z) (17)

J.R-J=R (18)

As a starting matrix, one can take any unitary transform
that has N/2 symmetric and N/2 antisymmetric vectors,
like for example the Walsh-Hadamard (N = 2™) or the
discrete cosine transform. There is obviously a large set of
possible diagonal matrices of delays that satisfy (17). For
example, in the case NV = 4, we list the 4 possible matrices

D(z):

1 z~!

D) = {

z7! 1

b a9

The condition (18) on the matrix R is even more re-
laxed. For example, all symmetric Toeplitz matrices satisfy
(18). A closer look shows that matrices satisfying (18) are
of the form:

1 z~t

-1
2L 1

R = Mo Ml
JMJ JM,J

where M, and M, are size N/2 by N/2 matrices, and J
is the antidiagonal matrix of size ¥/2. One can verify that
(18) is satisfied since:

(20)

Mg M1

0 7J 0o J
J 0 IM, T IMJT J o

(M, M
=laM T M,

where we used the fact that J? = I. If R is required to be
unitary, that is (assuming real coefficients):

(21)

RT.R=R-RT=1 (22)
then it can be verified that the matrices M, and M, have
to satisfy:
M, M7 +M, - MT =1 (23a)
M;-J-MT+M,-J-MT =0 (23b)
which corresponds to R-R7 = 1. Since the product (22) is
commutative, RT-R = I leads to another but equivalent set
of conditions. Note that (23a) is the usual orthonormality
of the first N/2 rows of R, while (23b) captures the inherent

“symmetry” of R that is required in order to meet (18). A
simple example, for V = 4, would be:

-1 1 a a

1 1 1 -a a
R=— . 24
V2(1 + a?) a -—-a 1 1 (24)

a a 1 -1

which satisfies (23) as can be checked. Instead of a post-
multiplication in (16), one may waat a pre-multiplication.
It turns out that that no delay matrix D(z) (except triv-
ial ones) will satisfy (15), but that any matrix R which is
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block-diagonal with blocks of size N/2 by N/2 will. There-
fore, any solution Hp(z) can be modified by a pre-multipli-
cation with such a block-diagonal matrix. This is similar
to techniques used in so-called “lapped orthogonal trans-
forms” (LOT) [7], which can be seen as filter banks where
the filters are restricted to L = 2V [16].

In summary, this section showed a possible way, for
more than two channels (V > 2), to generate paraunitary
filter matrices of any degree meeting the additional con-
straint of linear phase of the resulting filters.

V Filters Satisfying Frequency Symmetry Constraints

In a bank of V filters, it is often desired that the higher
frequency filters are obtained by modulation of the lower
frequency ones, and this both for computational reasons
and because of the desired frequency responses. The ex-
treme case is when a single prototype low-pass filter is
modulated over the whole frequency range, and the sim-
plest case appears when pairs of high and low frequency
filters are related by a modulation with (—-1)". We will
consider only the latter case here, the former having been
addressed in [14,11]. Let us assume the following celation
between filters (IV is even):

HN_,‘-_;(z}=H;(—:} i-—_O---N_,-’B—l (25}
For N = 2, this is the classical QMF case. Now, the
condition in (25) forces symmetries in the polyphase ma-
trix Hp(z), since even numbered polyphase components of
H(z) and Hy_;_1(z) are equal, while odd numbered ones
have opposite sign. Define a matrix T of size NV by NV as:

1 0 0 ... ...0 0 1
1 0 0 ... ... 0 0 -1

T=[0 1 0 ... ... 0 1 0 (26)
0 ... 0 1 =10 ... 0

Now, because of the symmetry in (25), we can verify that:

(T -Hy(2); = 2H,(2),

L+ ] even

=0, i+jodd (27)
where 1,7 is the row/column index with the numbering
starting from 0. As in previous sections, we would like
to be able to generate recursively polyphase matrices satis-
fying (27). More precisely, assume we have a matrix H,(z)
that satisfles (27), and that we obtain a matrix H(z) by
pre- or post-multiplying H,(z) with a delay or “rotation”
matrix, then how should we choose these so that H,(z)
satisfies (27) as well. Note that the delay and “rotation”
matrix should be independent of H,(z).
the following 4 cases,

a) Pre-multiplication by a delay matrix D(z): It is easy to
verify that D(z) (which is diagonal by assumption) has to

meet:

Let us consider

(D(2)]:.i = [D(z)|n-i—1,8-i-1 (28)

b) Pre-multiplication by a rotation matrix R: We call this
a “rotation” matrix because it will be in general chosen as
a unitary matrix (but not necessarily). Then the rows of
R have to be related by:

TOWN-i—) =row; -J (29)

Tt W‘!‘_‘(—' T T e o i e T T




so that H}(z) meets (27).
¢) Post-multiplication by a delay matrix D(z): No condi-
tion is necessary, since as long as D(z) is diagonal, Hj(z)
will meet (27).
d) Post-multiplication by a rotation matrix R: In that case,
it is necessary and sufficient that

R;, =0, i+jodd (30)
Then, Hj(z) will meet (27) as well.

Note that a)-d) give conditions so that (27) is met re-
cursively, and this independently of the previous terms in
the cascade. Now, if the matrices D(z) and R meet ad-
ditional constraints, like the ones required for linear phase
or paraunitarity, then the resulting polyphase matrix will
yield linear phase filters or be paraunitary (on top of lead-
ing to the frequency symmetry given by (25)). As a simple
example, look at the following post-multiplication matrix:

1 0 a 0
1 0 1 0 -a
Re=Azar|-a 01 o .
0 a 0 1

This matrix satisfies (18) (linear phase constraint), (22)
(it is a unitary matrix). and (30) (frequency symmetry).
When used together with delay matrices as in (19) as well
as a starting matrix that satisfies (27) (like the Walsh-
Hadamard or the discrete cosine transform matrix of size
4 by 4), this rotation matrix will lead to a perfect recon-
struction, linear phase filter bank with frequency symmetry
(N = 4, arbitrary filter length and identical analysis and
synthesis filters). Of course, (31) is very constrained, and
does not lead to very interesting filters. The point was to
show that solutions to such heavily constrained filter banks
exist and can be constructed recursively.

VI Computational Complexity

Because of their special structure the filter banks in-
troduced in this paper can have very low computational
complexity. We will concentrate mainly on the two chan-
nel case. Let us first review the paraunitary case (see (6}),
where the computational blocks are 2 by 2 rotation matn-
ces [13]. Since a rotation matrix can always be written as
(2] (with @ = cos(a) and b = sin(e) ):

a b 1 -1 0) [° 1 1\
(b a)=(1 0 1)' cal 10!
- b—a 1 0/
(32)
it takes 3 multiplications per rotation. A bank with 2 filters
of length L = 2K has K such blocks and 2 input values
produce 2 new output values {(one in each channel), thus
the computational complexity of a paraunitary 2 channels
filter bark is (3K /2) multiplications per input sample. This
was already noted in [5] without using factorization. Now,
if one uses denormalized blocks (for example, dividing (32)
by a) then each block takes only two multiplications, and
one multiplication is required at the end in each channel
in order to renormalize the output. The computational
complexity per input sample is therefore equal to (K + 1).
This result was noted in [4].
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Let us consider the linear phase case next (see (12)) .
Each computational block can be written as:

l4a
(: s l—a )'(i jl)s G-‘,é{l,—‘l}
2v1l-a

(33)
The factor 1/+/1 — a? was used to “normalize "the matrix
(in a loose sense since the matrix is not orthogonal). Since
a block written as (33) requires 2 multiplications and that
there are K — 1 blocks, the multiplicative complexity of a
length L = 2K filter bank is (K — 1) multiplications per
input sample. Now, if (33) is “denormalized”, that is:

= 9)-02)C )G )
a#{1,-1}

then each block requires only 1 multiplication plus one at
the end to renormalize the result in each channel, that is a
total of (K + 1)/2 multiplication per input sample. Note
that this is half as much as in the paraunitary case. The
number of additions in {34) can actually be reduced by 1 [4].
A hardware structure implementing a linear phase perfect
reconstruction filter bank is shown in figure 2.

(34)

Finally, and for completeness, we review the “classical”
QMF case. In that case, H (z) = Hyp(—=z), and Hy(z) is a
linear phase {symmetric) filter. It can be verified that the
corresponding polyphase matrix can be written as:

K-1

g6=(1 )T (7™ i)
(

k=1

Note that perfect reconstruction can only be approximated
since the determinant of H,(z) is not a delay (nor a min-
imum phase filter). Now (35) takes 2 multiplications per
block, that is assuming a normalization at the output of
each channel, a complexity of K multiplication per input
sample. This result is well known [15] even without going
through a factorization such as {35), but the form of the
diagonal matrix in (35) is such that no “denormalization”
will reduce the complexity further as it did in the other
cases.

Table II summarizes the various computational com-
plexities derived in this section. Note that the restrictions
put on the building blocks have actually reduced the com-
putational complexity, a result that holds for N > 2 as
well.

VII Conclusion

This paper has shown sufficient conditions to gener-
ate recursively perfect reconstruction filter banks meeting
additional constraints, like linear phase and/or frequency
symmetries.




The method used was to cascade independent blocks,
where the constraints were met at each intermediate stage
While the condition that a perfect reconstruction
filter bank can be generated recursively with independent
blocks is sometimes too restrictive (for ex., some solutions
are not reachable in the case N = 2 with linear phase),
cases of interest have been generated with the proposed
cascade forms. Additionally, these cascade forms are very
convenient for synthesis and implementation purposes.

as well.

Using these structures, it was shown that even very
restricted designs of filter banks can exist, like paraunitary
solutions with both linear phase and frequency symmetry
for N = 4. Future work is necessary however in order to
design flters meeting desired frequency responses in addi-
tion to the above, structurally enforced properties of the
global filter bank.

Finally, the computational complexity of these con-
strained filter banks was addressed, and shown to be fairly
low. For example, a linear phase two channel perfect recon-
struction filter bank with filters of length L requires only
about L/4 multiplications per input sample. This is about
half as much as that required by the classical QMF or the
minimum/maximum phase filter solutions.

In conclusion, new cascade solutions have been demon-
strated for constrained, perfect reconstruction filter bank
systems with arbitrary long FIR filters.
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L Scaling Analysis & synthesis Filters
factor
2 2 Hyz) =1+ z_:
Hz)=1-z"

4 2(1-a,?) Hyz)=1+az"' 4+ az_: + r._i

H@)=1+az" —az -2z~
6 | 2(1-a)(1-ay)) | Hoz) =1+ azz Y4 o(e, + ez _1+ (ay + ay2)z” + azz . 1s

Hiz)=1+a;z" +(-a oz (e a2 —a -2

Table I: Linear phase perfect reconstruction filters obtained from the cascade form (12).
The scaling factor is the term that has to be divided out between analysis and syn-
H;("‘Z) and G;(:) = *Ho(—z).

thesis. The synthesis filters are given by Go(z) =




Type of Normalized | Denormalized
Filter bank block block
min/max phase 3K/2 K+1
(paraunitary)
Linear Phase K-1 (K+1)/2

Classical QMF

Table II: Number of multiplications for two channel filter

banks (for each new input and filters of length

L =2K).

Analysis
Filters

X{z)—e [}

H(2™

/

- Hg(z) _®_
| H(2) _®_

/

—

b = o —

2
Ho—

e

@ ST

X o X

Fig. 2: a) Linear phase, perfect reconstruction two chan-
nel analysis filter bank

b) Equivalent synthesis filter bank

¢) One multiplier elementary block implementa-
tion

L (D) e — —@Gm-x(’1

Sub-
sampling

Up-
sampling

Svnthesis
ilters

GD(I) -

G]("-‘ —

Fig. 1: Analysis/synthesis system with M channels and
subsampling by N, as well as typical frequency
responses of the filters.
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