We present a general framework for constructing transforms in the field of the input which have a convolution-like property. The construction is carried out over the reals, but is shown to be valid over more general fields. We show that these basefield transforms can be viewed as “projections” of the discrete Fourier transform (DFT). Furthermore, by imposing an additional condition on the projections, one may obtain self-inverse versions of the basefield transforms. Applying the theory to the real and complex fields, we show that the projection of the complex DFT results in the discrete combinational Fourier transform (DCFT) and that the imposition of the self-inverse condition on the DCFT yields the discrete Hartley transform (DHT). Additionally, we show that the method of projection may be used to derive efficient basefield transform algorithms by projecting standard FFT algorithms from the extension field to the basefield. Using such an approach, we show that many of the existing real Hartley algorithms are projections of well-known FFT algorithms