In this correspondence, we consider sampling continuous-time periodic bandlimited signals which contain additive shot noise. The classical sampling scheme does not perfectly recover these particular nonbandlimited signals but only reconstructs a lowpass filtered approximation. By modeling the shot noise as a stream of Dirac pulses, we first show that the sum of a bandlimited signal with a stream of Dirac pulses falls into the class of signals that contain a finite rate of innovation, that is, a finite number of degrees of freedom. Second, by taking into account the degrees of freedom of the bandlimited signal in the sampling and reconstruction scheme developed previously for streams of Dirac pulses, we derive a sampling and perfect reconstruction scheme for the bandlimited signal with additive shot noise.