Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Domain decomposition preconditioners : theoretical properties, application to the compressible Euler equations, parallel aspects
 
doctoral thesis

Domain decomposition preconditioners : theoretical properties, application to the compressible Euler equations, parallel aspects

Sala, Marzio  
2003

The purpose of this thesis is to define efficient parallel preconditioners based on the domain decomposition paradigm and to apply them to the solution of the steady compressible Euler equations. In the first part we propose and analyse various domain decomposition preconditioners of both overlapping (Schwarz) and non-overlapping (Schur complement-based) type. For the former, we deal with two-level methods, with an algebraic formulation of the coarse space. This approach enjoys several interesting properties not always shared by more standard twolevel methods. For the latter, we introduce a class of preconditioners based on a peculiar decomposition of the computational domain. The domain is decomposed in such a way that one subdomain is connected to all the others, which are in fact disconnected components. A class of approximate Schur complement preconditioners is also considered. Theoretical and numerical results are given for a model problem. In the second part we consider the application of the previous domain decomposition preconditioners to the compressible Euler equations. The discretisation procedure, based on multidimensional upwind residual distribution schemes, is outlined. We introduce a framework that combines non-linear system solvers, Krylov accelerators, domain decomposition preconditioners, as well as mesh adaptivity procedures. Several numerical tests of aeronautical interest are carried out in order to assess both the discretisation schemes and the mesh adaptivity procedures. In the third part we consider the parallel aspects inherent in the numerical solution of the compressible Euler equations on parallel computers with distributed memory. All the main kernels of the solution algorithm are analysed. Many numerical tests are carried out, with the aim of investigating the performance of the domain decomposition preconditioners proposed in the first part of the thesis, in the applications addressed in the second part.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH2733.pdf

Access type

openaccess

Size

11 MB

Format

Adobe PDF

Checksum (MD5)

0af8b28ec4eed0a7a4ad4852df6f3e30

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés