Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Endoscopic holography with a muticore optical fiber applied to biomedical imaging
 
doctoral thesis

Endoscopic holography with a muticore optical fiber applied to biomedical imaging

Coquoz, Olivier
1994

An in situ holographic technique based on the use of a flexible miniaturized endoscope (diameter less than 1 mm) was developed for medical applications. The holographic system features a multicore optical fiber (MCF) coupled to a CCD camera to record the hologram. The hologram is formed by reflection on the tip of the MCF, sampled, and then treated electronically after video acquisition. The image is reconstructed numerically, providing more flexibility to the holographic process. This process required the development of an ad hoc computer algorithm, which was used as well to simulate the whole holographic procedure. The performance of this holographic method was assessed in terms of spatial resolution and sensitivity to noise. The low spatial sampling rate of the MCF was not a limitation for the range of distances investigated (≥ 4 mm). It was predicted to adversely affect the image only at very close observation distances (< 2 mm). The different sources of noise have been analyzed and their relative importance quantified. The resolution proved to be unaltered by noise originating from the propagation of coherent light in the MCF. The miniaturized endoholoscope prototype was capable of resolving 5 μm-objects at a 4 mm distance (the smallest distance reachable with the current setup). This provides the possibility to observe biological tissues at the cellular level. Preliminary investigations in biological conditions have been performed with the holographic system. The observation of an object through a turbid medium was improved by the holographic technique. Images of biological tissues demonstrated the ability to perform coherent imaging of cells, potentially providing major contribution to in vivo and in situ spectroscopic diagnostic capabilities at the microscopic scale.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH1277.pdf

Access type

restricted

Size

519.53 KB

Format

Adobe PDF

Checksum (MD5)

c62b7e748324cccb996c7d05bd83dc06

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés