Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nanocluster Aerosols from Ozone-Human Chemistry Are Dominated by Squalene-Ozone Reactions
 
research article

Nanocluster Aerosols from Ozone-Human Chemistry Are Dominated by Squalene-Ozone Reactions

Yang, Shen  
•
Licina, Dusan  
June 21, 2024
Environmental Science & Technology Letters

Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate feedbacks and potentially with human health. Our recent study revealed NCA formation owing to the reaction of ozone with human surfaces. However, the underlying mechanisms driving NCA emissions remain unexplored. Squalene is the most abundant compound in human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study aims to examine the contribution of the squalene-ozone reaction to NCA formation and the influence of ozone and ammonia (NH3) levels. In a climate-controlled chamber, we painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their reactions with ozone. The squalene-ozone reaction was further investigated at different ozone levels (15 and 90 ppb) and NH3 levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased ozone levels, whereas increased NH3 levels were associated with the stronger generation of larger NCAs but fewer of the smallest ones. This study experimentally confirms that NCAs are primarily formed from squalene-ozone reactions in ozone-human chemistry.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

yang-licina-2024-nanocluster-aerosols-from-ozone-human-chemistry-are-dominated-by-squalene-ozone-reactions.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.93 MB

Format

Adobe PDF

Checksum (MD5)

f3323b5e49f43f257166f06f5920efc1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés