Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. First-principles thermodynamics of precipitation in aluminum-containing refractory alloys
 
research article

First-principles thermodynamics of precipitation in aluminum-containing refractory alloys

Mueller, Yann L.
•
Natarajan, Anirudh Raju  
August 1, 2024
Acta Materialia

Materials for high -temperature environments are actively being investigated for deployment in aerospace and nuclear applications. This study uses computational approaches to unravel the crystallography and thermodynamics of a promising class of refractory alloys containing aluminum. Accurate first -principles calculations, cluster expansion models, and statistical mechanics techniques are employed to rigorously analyze precipitation in a prototypical senary Al-Nb-Ta-Ti-V-Zr alloy. Finite -temperature calculations reveal a strong tendency for aluminum to segregate to a single sublattice at elevated temperatures. Precipitate and matrix compositions computed with our ab-initio model are in excellent agreement with previous experimental measurements (Soni et al., 2020). Surprisingly, conventional B2 -like orderings are found to be both thermodynamically and mechanically unstable in this alloy system. Complex anti -site defects are essential to forming a stable ordered precipitate. Our calculations reveal that the instability of B2 compounds can be related to a simple electron counting rule across all binary alloys formed by elements in groups 4,5, and 6. The results of this study provide viable routes toward designing high -temperature materials for deployment in extreme environments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1359645424003471-main.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.84 MB

Format

Adobe PDF

Checksum (MD5)

f08194866e544cb113ed99ca258b5e29

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés