Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Neurocognition and NMDAR co-agonists pathways in individuals with treatment resistant first-episode psychosis: a 3-year follow-up longitudinal study
 
research article

Neurocognition and NMDAR co-agonists pathways in individuals with treatment resistant first-episode psychosis: a 3-year follow-up longitudinal study

Camporesi, Sara
•
Xin, Lijing  
•
Golay, Philippe
Show more
June 7, 2024
Molecular Psychiatry

This study aims to determine whether 1) individuals with treatment-resistant schizophrenia display early cognitive impairment compared to treatment-responders and healthy controls and 2) N-methyl-D-aspartate-receptor hypofunction is an underlying mechanism of cognitive deficits in treatment-resistance. In this case-control 3-year-follow-up longitudinal study, n = 697 patients with first-episode psychosis, aged 18 to 35, were screened for Treatment Response and Resistance in Psychosis criteria through an algorithm that assigns patients to responder, limited-response or treatment-resistant category (respectively resistant to 0, 1 or 2 antipsychotics). Assessments at baseline: MATRICS Consensus Cognitive Battery; N-methyl-D-aspartate-receptor co-agonists biomarkers in brain by MRS (prefrontal glutamate levels) and plasma (D-serine and glutamate pathways key markers). Patients were compared to age- and sex-matched healthy controls (n = 114). Results: patient mean age 23, 27% female. Treatment-resistant (n = 51) showed lower scores than responders (n = 183) in processing speed, attention/vigilance, working memory, verbal learning and visual learning. Limited responders (n = 59) displayed an intermediary phenotype. Treatment-resistant and limited responders were merged in one group for the subsequent D-serine and glutamate pathway analyses. This group showed D-serine pathway dysregulation, with lower levels of the enzymes serine racemase and serine-hydroxymethyltransferase 1, and higher levels of the glutamate-cysteine transporter 3 than in responders. Better cognition was associated with higher D-serine and lower glutamate-cysteine transporter 3 levels only in responders; this association was disrupted in the treatment resistant group. Treatment resistant patients and limited responders displayed early cognitive and persistent functioning impairment. The dysregulation of NMDAR co-agonist pathways provides underlying molecular mechanisms for cognitive deficits in treatment-resistant first-episode psychosis. If replicated, our findings would open ways to mechanistic biomarkers guiding response-based patient stratification and targeting cognitive improvement in clinical trials.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.4 MB

Format

Adobe PDF

Checksum (MD5)

6baf95703daf3ce0633dd28383f359b6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés