Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Randomized low-rank approximation and its applications
 
doctoral thesis

Randomized low-rank approximation and its applications

Persson, Ulf David  
2024

In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functions, the use of randomized low-rank approximation for trace estimation, and randomized low-rank approximation of self-adjoint non-negative trace class operators.

Chapters 3 to 5 will be concerned with low-rank approximations of matrix functions. We will present two methods to compute low-rank approximations of matrix functions. In Chapter 4 we will analyze a method called funNyström, which uses a low-rank approximation to $\bm{A}$ to obtain a low-rank approximation to $f(\bm{A})$, where $f$ is a non-negative operator monotone function. In particular, we will show that a near-optimal Nyström low-rank approximation can be used to construct a near-optimal funNyström low-rank approximation. In Chapter 5 we will consider a block-Krylov subspace method to compute randomized low-rank approximations of general matrix-functions. We will provide probabilistic error bounds for the method.

Chapters 6 to 8 will be concerned with trace estimation. In Chapter 7 we will present an adaptive version of the Hutch++ algorithm. This algorithm takes an error tolerance as input, and returns an estimate of the trace within the error tolerance with a controllable failure probability, while minimizing the number of matrix-vector products with the matrix. In Chapter 8 we present a single pass version of the Hutch++ algorithm. This algorithm uses the Nyström approximation instead of the randomized SVD in the low-rank approximation phase of Hutch++, and we prove that it satisfies a similar complexity guarantee as Hutch++.

Chapter 9 will be concerned with an infinite-dimensional generalization of the Nyström approximation to compute randomized low-rank approximations to self-adjoint non-negative trace class operators. We will provide an error bound for the finite-dimensional Nyström approximation when it is implemented with non-standard Gaussian random vectors. We then use these bounds to prove an error bound for an infinite-dimensional generalization of the Nyström approximation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH10967.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

5.49 MB

Format

Adobe PDF

Checksum (MD5)

46a94db2c265b803394d6f8c4fdc6b8f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés