Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. CO2 Capture and Management Strategies for Decarbonizing Secondary Aluminium Production
 
conference paper

CO2 Capture and Management Strategies for Decarbonizing Secondary Aluminium Production

Dardor, Dareen  
•
Florez Orrego, Daniel Alexander  
•
Ribeiro Domingos, Meire Ellen Gorete  
Show more
June 2, 2024
Proceedings of ESCAPE 2024
34th European Symposium on Computer Aided Process Engineering (ESCAPE 2024)

The production of aluminium largely depends on the use of fossil fuels, resulting in the emission of significant amounts of greenhouse gases. As the aluminium industry is working towards decreasing its environmental burdens, the elimination of direct emissions from the remelting step becomes increasingly important. This research presents opportunities for decarbonizing secondary aluminium remelting and rolling via optimized carbon capture and abatement routes. Various carbon capture and management strategies for secondary aluminium production sites are developed and evaluated. To this end, process integration and optimization techniques following a mixed integer linear programming (MILP) approach are applied. A blueprint of an aluminium plant is developed, and the integration of several carbon capture and management technologies is modelled. The studied capture options include oxy-combustion, amine-based absorption, membranes, structured solid sorbents, and cryogenic beds. Once captured, the concentrated CO2 gas stream can be pressurized for pipeline transport or injection into basaltic rock formations, transformed into synthetic natural gas, mineralized into cement additives, or used to produce plastic monomers. A systemic approach was adopted to compare these options in terms of multiple performance indicators. It was found that, more than 90% of the emitted CO2 can be efficiently captured and utilized. Moreover, additional revenue from cement additives (produced via mineralization), or reduced expenses (due to less CO2 tax) via injection routes results in a net negative change in operating expenditures of the plant with comparison to continuously emitting the base flows of fossil CO2. While methanation provides a potential defossilization route when coupled with the use of renewable electricity, it comes at the expense of CO2 upgrading costs currently higher than buying cheap (subsidies) fossil fuel. Moreover, production of value-added chemicals (olefins) through CO2 capture was also found more expensive from a system point of view compared to today’s fossil-based prices of these commodities. Among the evaluated capture technologies oxyfuel combustion was found specifically promising in the case of secondary aluminium production due to its improved energy efficiency and high technology readiness levels which drive lower costs of application. All these capture and utilization systems are almost three times cheaper than importing green hydrogen for use in aluminium furnaces, a potential solution still under experimental validation in the aluminium sector. Finally, in case of CO2 transportation for injection, logistical challenges are a pressing issue for industries looking to reduce their direct emissions, especially in land-locked countries such as Switzerland.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Dardor et al. CO2 Capture and Management Strategies for Decarbonizing Secondary Aluminium Production ESCAPE 2024.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

restricted

License Condition

copyright

Size

1.34 MB

Format

Adobe PDF

Checksum (MD5)

cdfb67fd348888f203996f349702f944

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés