Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A 16-Channel 60µW Neural Synchrony Processor for Multi-Mode Phase-Locked Neurostimulation
 
conference paper not in proceedings

A 16-Channel 60µW Neural Synchrony Processor for Multi-Mode Phase-Locked Neurostimulation

Shin, Uisub  
•
Ding, Cong  
•
Somappa, Laxmeesha  
Show more
2022
2022 IEEE Custom Integrated Circuits Conference (CICC)

Measuring neural oscillatory synchrony facilitates our understanding of complex brain networks and the underlying pathological states. Altering the cross-regional synchrony-as a measure of brain network connectivity-via phase-locked deep brain stimulation (DBS) could provide a new therapeutic solution for various neurological [1] and psychiatric disorders [2]. This feature is missing in current neuromodulation devices and requires an accurate, energy-efficient computation of oscillatory phase and cross-regional synchrony on chip. The conventional iterative vector processing approach via CORDIC [3] can accurately extract the instantaneous phase and phase locking value (PLV) at the cost of high power consumption (400µW). As a result, it cannot be applied to large-scale (>100-CH) neuronal networks. Moreover, the latency in the pipelined CORDIC processor may hinder timely phase-locked stimulation in the absence of an excessively high clock speed. Alternatively, the PLV extractors in [4], [5] utilized simple approximation algorithms such as 1-bit quantization and local minima detection. These methods, albeit efficient, compromise PLV accuracy and cannot extract the instantaneous phase of neuronal signals. To provide an efficient, flexible, and accurate phase-locked DBS platform, this paper integrates a 16-channel low-noise AFE, an energy-efficient multi-mode phase synchrony processor, and a 4-channel neurostimulator that is locked to specific neuronal oscillatory phases (i.e., fixed or random phase, PLV or PAC). An amplitude-locked control can be further enabled through envelope and multi-band spectral energy extraction for common use cases such as epilepsy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

A_16-Channel_60W_Neural_Synchrony_Processor_for_Multi-Mode_Phase-Locked_Neurostimulation.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

3.43 MB

Format

Adobe PDF

Checksum (MD5)

faeea5bcccce0e01073c5056bef59c5c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés