Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Partial discharge localization in power transformer tanks using machine learning methods
 
research article

Partial discharge localization in power transformer tanks using machine learning methods

Khodaveisi, Farzin
•
Karami, Hamidreza
•
Karimpour, Matin Zarei
Show more
2024
Scientific Reports

This paper presents a comparison of machine learning (ML) methods used for three-dimensional localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep learning (DL) methods, ranging from support vector machines (SVM) to more complex approaches like convolutional neural networks (CNN). Multiple case studies are considered, each with different attributes, including sensor position, frequency content of the PD signal, and size of the transformer tank. The paper focuses on predicting the PD location in three-dimensional space using single-sensor electric field measurements. Various aspects of each method are analyzed, such as the input signal, core methodology, correlation coefficient between the predicted location and the actual location, and root mean square error (RMSE). These features are discussed and compared across the different methods. The results indicate that the CNN model exhibits superior performance in terms of location accuracy among the methods considered.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41598-024-62527-9.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.01 MB

Format

Adobe PDF

Checksum (MD5)

7a4ab8f89f3a97e334f67278e3f3eaa7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés