Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Augmented Memory: Sample-Efficient Generative Molecular Design with Reinforcement Learning
 
research article

Augmented Memory: Sample-Efficient Generative Molecular Design with Reinforcement Learning

Guo, Jeff  
•
Schwaller, Philippe  
April 10, 2024
Jacs Au

Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparent when using oracles that can provide increased predictive accuracy but impose significant computational cost. Consequently, designing molecules that are optimized for such oracles cannot be achieved under a practical computational budget. Molecular generative models based on simplified molecular-input line-entry system (SMILES) have shown remarkable sample efficiency when coupled with reinforcement learning, as demonstrated in the practical molecular optimization (PMO) benchmark. Here, we first show that experience replay drastically improves the performance of multiple previously proposed algorithms. Next, we propose a novel algorithm called Augmented Memory that combines data augmentation with experience replay. We show that scores obtained from oracle calls can be reused to update the model multiple times. We compare Augmented Memory to previously proposed algorithms and show significantly enhanced sample efficiency in an exploitation task, a drug discovery case study requiring both exploration and exploitation, and a materials design case study optimizing explicitly for quantum-mechanical properties. Our method achieves a new state-of-the-art in sample-efficient de novo molecular design, outperforming all of the previously reported methods. The code is available at https://github.com/schwallergroup/augmented_memory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

guo-schwaller-2024-augmented-memory-sample-efficient-generative-molecular-design-with-reinforcement-learning.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

10.14 MB

Format

Adobe PDF

Checksum (MD5)

cdb1afecf51cb245c3642b3c9447721a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés